计算机科学
稳健性(进化)
人工智能
嵌入
计算机视觉
目标检测
分割
感知
任务(项目管理)
对象(语法)
模式识别(心理学)
工程类
神经科学
化学
系统工程
基因
生物
生物化学
作者
Yingfei Liu,Junjie Yan,Fan Jia,Shuailin Li,Aqi Gao,Tiancai Wang,Xiangyu Zhang
标识
DOI:10.1109/iccv51070.2023.00302
摘要
In this paper, we propose PETRv2, a unified framework for 3D perception from multi-view images. Based on PETR [25], PETRv2 explores the effectiveness of temporal modeling, which utilizes the temporal information of previous frames to boost 3D object detection. More specifically, we extend the 3D position embedding (3D PE) in PETR for temporal modeling. The 3D PE achieves the temporal alignment on object position of different frames. To support for multi-task learning (e.g., BEV segmentation and 3D lane detection), PETRv2 provides a simple yet effective solution by introducing task-specific queries, which are initialized under different spaces. PETRv2 achieves state-of-the-art performance on 3D object detection, BEV segmentation and 3D lane detection. Detailed robustness analysis is also conducted on PETR framework. Code is available at https://github.com/megvii-research/PETR.
科研通智能强力驱动
Strongly Powered by AbleSci AI