I Know This Looks Bad, But I Can Explain: Understanding When AI Should Explain Actions In Human-AI Teams

团队合作 感知 透明度(行为) 功能(生物学) 计算机科学 人工智能应用 心理学 人工智能 知识管理 政治学 计算机安全 神经科学 进化生物学 法学 生物
作者
Rui Zhang,Christopher Flathmann,Geoff Musick,Beau G. Schelble,Nathan J. McNeese,Bart P. Knijnenburg,Wen Duan
出处
期刊:ACM transactions on interactive intelligent systems [Association for Computing Machinery]
卷期号:14 (1): 1-23 被引量:6
标识
DOI:10.1145/3635474
摘要

Explanation of artificial intelligence (AI) decision-making has become an important research area in human–computer interaction (HCI) and computer-supported teamwork research. While plenty of research has investigated AI explanations with an intent to improve AI transparency and human trust in AI, how AI explanations function in teaming environments remains unclear. Given that a major benefit of AI giving explanations is to increase human trust understanding how AI explanations impact human trust is crucial to effective human-AI teamwork. An online experiment was conducted with 156 participants to explore this question by examining how a teammate’s explanations impact the perceived trust of the teammate and the effectiveness of the team and how these impacts vary based on whether the teammate is a human or an AI. This study shows that explanations facilitate trust in AI teammates when explaining why AI disobeyed humans’ orders but hindered trust when explaining why an AI lied to humans. In addition, participants’ personal characteristics (e.g., their gender and the individual’s ethical framework) impacted their perceptions of AI teammates both directly and indirectly in different scenarios. Our study contributes to interactive intelligent systems and HCI by shedding light on how an AI teammate’s actions and corresponding explanations are perceived by humans while identifying factors that impact trust and perceived effectiveness. This work provides an initial understanding of AI explanations in human-AI teams, which can be used for future research to build upon in exploring AI explanation implementation in collaborative environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助落寞的又菡采纳,获得10
1秒前
2秒前
西溪浅浅完成签到 ,获得积分10
2秒前
自由的蒜苗完成签到,获得积分10
2秒前
乖加油发布了新的文献求助20
2秒前
佳佳完成签到 ,获得积分10
2秒前
4秒前
李爱国应助结实平安采纳,获得10
5秒前
Orange应助狐狸采纳,获得10
5秒前
wenming完成签到 ,获得积分10
5秒前
LYSnow7完成签到 ,获得积分10
6秒前
活泼的大船完成签到,获得积分10
7秒前
XiaoMing发布了新的文献求助10
7秒前
西瓜橙子完成签到,获得积分10
8秒前
华仔应助shanp采纳,获得10
9秒前
求知的土拨鼠完成签到,获得积分10
9秒前
edenz完成签到,获得积分10
10秒前
打打应助Zkz采纳,获得10
10秒前
科研通AI5应助明亮飞双采纳,获得30
11秒前
11秒前
11秒前
个性的世开完成签到 ,获得积分20
12秒前
豆浆来点蒜泥完成签到,获得积分10
13秒前
13秒前
爱X7的嘛喽完成签到 ,获得积分10
13秒前
爱X7的嘛喽完成签到 ,获得积分10
13秒前
LSS完成签到,获得积分10
13秒前
研友_89Nm7L完成签到,获得积分10
14秒前
不包含特殊字符完成签到,获得积分10
14秒前
LXiao发布了新的文献求助10
14秒前
洪山老狗完成签到,获得积分10
15秒前
唐七完成签到,获得积分10
15秒前
恸哭的千鸟完成签到,获得积分10
15秒前
16秒前
852应助Zenobia采纳,获得10
16秒前
清爽冬莲完成签到 ,获得积分10
16秒前
jiemy完成签到,获得积分10
17秒前
青山完成签到,获得积分10
17秒前
17秒前
YYMY2022发布了新的文献求助10
17秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830672
求助须知:如何正确求助?哪些是违规求助? 3372994
关于积分的说明 10476648
捐赠科研通 3093056
什么是DOI,文献DOI怎么找? 1702310
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153