生物
细胞外基质
酪氨酸
细胞生长
分解代谢
癌细胞
细胞生物学
细胞内
细胞外
生物化学
癌症
新陈代谢
遗传学
作者
Mona Nazemi,Bian Yanes,Montserrat Llanses Martinez,Heather Walker,Khoa Pham,Mark O. Collins,Frédéric Bard,Elena Rainero
出处
期刊:PLOS Biology
[Public Library of Science]
日期:2024-01-16
卷期号:22 (1): e3002406-e3002406
被引量:23
标识
DOI:10.1371/journal.pbio.3002406
摘要
Breast tumours are embedded in a collagen I-rich extracellular matrix (ECM) network, where nutrients are scarce due to limited blood flow and elevated tumour growth. Metabolic adaptation is required for cancer cells to endure these conditions. Here, we demonstrated that the presence of ECM supported the growth of invasive breast cancer cells, but not non-transformed mammary epithelial cells, under amino acid starvation, through a mechanism that required macropinocytosis-dependent ECM uptake. Importantly, we showed that this behaviour was acquired during carcinoma progression. ECM internalisation, followed by lysosomal degradation, contributed to the up-regulation of the intracellular levels of several amino acids, most notably tyrosine and phenylalanine. This resulted in elevated tyrosine catabolism on ECM under starvation, leading to increased fumarate levels, potentially feeding into the tricarboxylic acid (TCA) cycle. Interestingly, this pathway was required for ECM-dependent cell growth and invasive cell migration under amino acid starvation, as the knockdown of p-hydroxyphenylpyruvate hydroxylase-like protein (HPDL), the third enzyme of the pathway, opposed cell growth and motility on ECM in both 2D and 3D systems, without affecting cell proliferation on plastic. Finally, high HPDL expression correlated with poor prognosis in breast cancer patients. Collectively, our results highlight that the ECM in the tumour microenvironment (TME) represents an alternative source of nutrients to support cancer cell growth by regulating phenylalanine and tyrosine metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI