本构方程
统计物理学
缩放比例
非线性系统
物理
法学
经典力学
应用数学
数学
热力学
几何学
政治学
量子力学
有限元法
作者
Candi Zheng,Yan Wang,Shiyi Chen
出处
期刊:Physical review
[American Physical Society]
日期:2023-01-17
卷期号:107 (1): 015104-015104
被引量:5
标识
DOI:10.1103/physreve.107.015104
摘要
Finding extended hydrodynamics equations valid from the dense gas region to the rarefied gas region remains a great challenge. The key to success is to obtain accurate constitutive relations for stress and heat flux. Data-driven models offer a new phenomenological approach to learning constitutive relations from data. Such models enable complex constitutive relations that extend Newton's law of viscosity and Fourier's law of heat conduction by regression on higher derivatives. However, the choices of derivatives in these models are ad hoc without a clear physical explanation. We investigated data-driven models theoretically on a linear system. We argue that these models are equivalent to nonlinear length scale scaling laws of transport coefficients. The equivalence to scaling laws justified the physical plausibility and revealed the limitation of data-driven models. Our argument also points out that modeling the scaling law could avoid practical difficulties in data-driven models like derivative estimation and variable selection on noisy data. We further proposed a constitutive relation model based on scaling law and tested it on the calculation of Rayleigh scattering spectra. The result shows our data-driven model has a clear advantage over the Chapman-Enskog expansion and moment methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI