Differentiated Attention Guided Network Over Hierarchical and Aggregated Features for Intelligent UAV Surveillance

计算机科学 背景(考古学) 特征(语言学) 判别式 目标检测 人工智能 频道(广播) 空间语境意识 特征提取 模式识别(心理学) 计算机网络 语言学 生物 哲学 古生物学
作者
Houzhang Fang,Zikai Liao,Xuhua Wang,Yi Chang,Luxin Yan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (9): 9909-9920 被引量:32
标识
DOI:10.1109/tii.2022.3232777
摘要

Intelligent unmanned aerial vehicle (UAV) surveillance based on infrared imaging has wide applications in the anti-UAV system for protecting urban security and aerial safety. However, weak target features and complex background distraction pose great challenges for the accurate detection of UAVs. To address this issue, we propose a novel differentiated attention guided network to adaptively strengthen the discriminative features between UAV targets and complex background. First, a novel spatial-aware channel attention (SCA) is introduced into deep layers via preserving critical spatial features and leveraging channel interdependencies to focus on the large-scale targets. The channel-modulated deformable spatial attention is introduced into shallow layers via refining channel context and dynamically perceiving the spatial features for focusing on the small-scale targets. A combination of the above two attention mechanisms is employed in intermediate layers of the network for concentrating on the medium-scale targets. Then, we embed a feature aggregator at the detection branches to guide the information exchange of high-level feature maps and low-level feature maps with a bottom-up context modulation, and integrate an SCA at the end to further boost the distinctive feature representation for task-awareness. The above design can adaptively enhance multiscale UAV target features and suppress complex background interferences, leading to better detection performance, especially for small targets. Extensive experiments on real infrared UAV datasets reveal that the proposed method outperforms the baseline object detectors by a large margin, validating its feasibility in real-world infrared UAV detection. The source code can be found at https://github.com/KALEIDOSCOPEIP/DAGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvjiahui完成签到,获得积分10
1秒前
干勾于关注了科研通微信公众号
1秒前
Hesper完成签到 ,获得积分10
2秒前
2秒前
传奇3应助MacD采纳,获得10
2秒前
3秒前
乐乐应助吱吱采纳,获得10
4秒前
优秀傲松完成签到,获得积分10
4秒前
LJbe2o完成签到,获得积分10
4秒前
Doctor_Mill完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
科目三应助小段段段段采纳,获得10
6秒前
鸭鸭完成签到,获得积分10
6秒前
淡然念双发布了新的文献求助10
6秒前
猫猫叽丫丫完成签到,获得积分10
6秒前
xiyan发布了新的文献求助10
8秒前
8秒前
whl完成签到,获得积分10
9秒前
chengxiping发布了新的文献求助10
9秒前
ii发布了新的文献求助10
10秒前
10秒前
李玲玲完成签到,获得积分10
10秒前
10秒前
hope发布了新的文献求助10
10秒前
南怀完成签到,获得积分10
11秒前
cheng完成签到,获得积分10
11秒前
顾清梵发布了新的文献求助60
12秒前
MacD完成签到,获得积分10
12秒前
yiling发布了新的文献求助30
13秒前
14秒前
14秒前
14秒前
淡然念双完成签到,获得积分10
15秒前
旺仔发布了新的文献求助10
15秒前
丘比特应助kkh采纳,获得10
16秒前
研友_VZG7GZ应助张7采纳,获得10
17秒前
蔡蔡不菜菜完成签到,获得积分10
17秒前
无心客给ChatGPT的求助进行了留言
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353776
求助须知:如何正确求助?哪些是违规求助? 4486351
关于积分的说明 13966218
捐赠科研通 4386702
什么是DOI,文献DOI怎么找? 2410022
邀请新用户注册赠送积分活动 1402355
关于科研通互助平台的介绍 1376132