UCM-Net: A U-Net-Like Tampered-Region-Related Framework for Copy-Move Forgery Detection

计算机科学 人工智能 增采样 棱锥(几何) 模式识别(心理学) 特征(语言学) 卷积(计算机科学) 深度学习 骨干网 分割 特征提取 图像(数学) 人工神经网络 数学 几何学 哲学 语言学 计算机网络
作者
Shaowei Weng,Tangguo Zhu,Tiancong Zhang,Chunyu Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 750-763 被引量:15
标识
DOI:10.1109/tmm.2023.3270629
摘要

Copy-move forgery causes a big challenge to copy-move forgery detection (CMFD) due to that the photometrical characteristics of genuine and tampered regions in the same image remain highly consistent. A novel U-Net-like architecture with multiple asymmetric cross-layer connections associated with self-correlation and atrous spatial pyramid pooling (ASPP) between feature extraction module (FEM) and tampered region localization module (TRLM), called UCM-Net, is proposed in this article. Different from existing deep learning based CMFD networks which indiscriminately process large or small tampered regions without considering the statistical characteristics of regions, FEM differentially treats large or small tampered regions by exploiting deep backbone networks to extract high-level features with rich semantic information for large tampered regions while utilizing lightweight backbone networks to extract low-level features for small tampered regions. Multiple cross-layer connections between two modules utilize the self-correlation calculation and ASPP to remove as much irrelevant semantic information as possible while retaining multi-scale tampered features from shallow to deep convolutional layers of FEM. Unlike the previous CMFD networks, which cannot capture multi-scale features because of simply stacking convolution blocks in the upsampling step, TRLM exploits multiple U-shaped residual U-block modules with different depths to change the receptive field of each point in the tampered feature maps so as to capture global and local information, greatly improving the localization accuracy of tampered regions. Experimental results on three publicly available databases demonstrate that UCM-Net outperforms several state-of-the-art algorithms in terms of various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉积岩完成签到,获得积分10
刚刚
Orange应助清风徐来采纳,获得10
1秒前
香蕉觅云应助chen采纳,获得10
1秒前
yyy发布了新的文献求助30
1秒前
1秒前
JerryZ发布了新的文献求助30
1秒前
彭于晏应助RuiXxxxx采纳,获得10
1秒前
整齐的问凝完成签到,获得积分20
3秒前
doctor_loong发布了新的文献求助10
4秒前
明亮紫易完成签到,获得积分10
4秒前
Ya完成签到,获得积分10
4秒前
CipherSage应助xiaoqin采纳,获得10
4秒前
binshier完成签到,获得积分10
4秒前
77发布了新的文献求助10
4秒前
5秒前
6秒前
kiwi完成签到,获得积分10
6秒前
111发布了新的文献求助10
7秒前
一二完成签到 ,获得积分10
7秒前
Ava应助hahaha采纳,获得10
7秒前
害羞的安萱完成签到,获得积分20
8秒前
田様应助傲娇的刺猬采纳,获得10
8秒前
9秒前
whisper完成签到,获得积分10
9秒前
dgfhg发布了新的文献求助10
9秒前
9秒前
大萝贝完成签到,获得积分10
9秒前
机灵的安青完成签到,获得积分20
9秒前
kk完成签到,获得积分10
9秒前
9秒前
CodeCraft应助Hshi采纳,获得10
10秒前
多情的灵安完成签到,获得积分10
10秒前
望望旺仔牛奶完成签到,获得积分10
10秒前
10秒前
个性的无敌给个性的无敌的求助进行了留言
11秒前
Samuel发布了新的文献求助10
11秒前
11秒前
kiwi发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534