DL_Track - Automated analysis of muscle architecture from B-mode ultrasonography images using deep learning

肌肉结构 试验装置 计算机科学 人工智能 模式识别(心理学) 深度学习 计算机视觉 解剖 医学
作者
Paul Ritsche,Oliver Faude,Martino V. Franchi,Taija Finni,Olivier Seynnes,Neil J. Cronin
出处
期刊:Current issues in sport science [Innsbruck University Press]
卷期号:8 (2): 088-088
标识
DOI:10.36950/2023.2ciss088
摘要

B-mode ultrasound is commonly used to image musculoskeletal tissues, but one major bottleneck is data analysis. Manual analysis is commonly deployed for assessment of muscle thickness, pennation angle and fascicle length in muscle ultrasonography images. However, manual analysis is somewhat subjective, laborious and requires thorough experience. We provide an openly available algorithm (DL_Track) to automatically analyze muscle architectural parameters in ultrasonography images or videos of human lower limb muscles. We trained two different neural networks (classic U-net [Ronneberger et al., 2021] and U-net with VGG16 [Simonyan & Zisserman, 2015] pretrained encoder) one to detect muscle fascicles and another to detect muscle aponeuroses using a set of labelled musculoskeletal ultrasound images. We included images from four different devices of the vastus lateralis, gastrocnemius medialis, tibilias anterior and soleus. In total, we included 310 images for the fascicle model and 570 images for the aponeuroses model, which we augmented to about 1,700 images per set. Each dataset was randomly split into a training and test set for model training, using a common 80/20 train/test split. We determined the best performing model based on intersection-over-union and loss metrics calculated during model training. We compared neural network predictions on an unseen test set consisting of 35 images to those obtained via manual analysis and two existing semi/automated analysis approaches (SMA and Ultratrack). Across the set of 35 unseen images, the mean differences between DL_Track and manual analysis were for fascicle length -2.4 mm (95% compatibility interval (CI) = -3.7 to -1.2), for pennation angle 0.6° (-0.2 to 1.4), and for muscle thickness -0.6 mm (-1.2 to 0.002). The corresponding values comparing DL_Track with SMA were for fascicle length 5.2 mm (1.3 to 9.0), for pennation angle -1.4° (-2.6 to -0.4) and for muscle thickness -0.9 mm (-1.5 to -0.3) respectively. ICC values between DL_Track and Ultratrack were 0.19 (0.00 to 0.35) for medial gastrocnemius passive contraction, 0.79 (0.77 to 0.81) for medial gastrocnemius maximal voluntary contraction, 0.88 (0.87 to 0.89) for calf raise, 0.67 (0.07 to 0.86) for medial gastrocnemius during walking, 0.80 (0.79 to 0.82) for tibialis passive plantar and dorsiflexion, and 0.85 (0.83 to 0.86) for tibialis anterior maximum voluntary contraction. Our method is fully automated and can estimate fascicle length, pennation angle and muscle thickness from single images or videos in multiple superficial muscles. For single images, the method gave results that are in agreement with those produced by SMA or manual analysis. Similarly, for videos, there was overlap between the results produced with Ultratrack and our method. In contrast to Ultratrack, DL_Track analyzes each frame independently of the previous frames, which might explain the observerd variability. References Ronneberger, O., Fischer, P., & Brox, T. (2021). U-Net: Convolutional networks for biomedical image segmentation. arXiv. https://doi.org/10.48550/arXiv.1505.04597 Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/arXiv.1409.1556
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fengbeing完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
朝伟呵发布了新的文献求助10
6秒前
SciGPT应助研友_5Zl9D8采纳,获得10
7秒前
9秒前
杜兰特工队完成签到,获得积分10
10秒前
大胆剑封发布了新的文献求助10
11秒前
笑点低的飞扬完成签到 ,获得积分10
11秒前
月月发布了新的文献求助10
11秒前
鱼鱼发布了新的文献求助10
11秒前
yingying发布了新的文献求助20
12秒前
14秒前
西米露完成签到 ,获得积分10
14秒前
15秒前
16秒前
乐观的雨应助lam采纳,获得10
17秒前
粗心小熊猫完成签到,获得积分10
17秒前
CodeCraft应助午夜煎饼采纳,获得10
17秒前
王提发布了新的文献求助10
18秒前
zhouxw27完成签到,获得积分10
19秒前
哆啦A梦完成签到,获得积分10
21秒前
bkagyin应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
大胆剑封完成签到,获得积分10
23秒前
26秒前
26秒前
晨光完成签到 ,获得积分10
28秒前
HongJiang发布了新的文献求助10
28秒前
852应助LHL采纳,获得10
28秒前
研友_5Zl9D8发布了新的文献求助10
29秒前
99完成签到,获得积分10
29秒前
QQT完成签到,获得积分10
29秒前
zho应助lam采纳,获得10
31秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732