亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DL_Track - Automated analysis of muscle architecture from B-mode ultrasonography images using deep learning

肌肉结构 试验装置 计算机科学 人工智能 模式识别(心理学) 深度学习 计算机视觉 解剖 医学
作者
Paul Ritsche,Oliver Faude,Martino V. Franchi,Taija Finni,Olivier Seynnes,Neil J. Cronin
出处
期刊:Current issues in sport science [Innsbruck University Press]
卷期号:8 (2): 088-088
标识
DOI:10.36950/2023.2ciss088
摘要

B-mode ultrasound is commonly used to image musculoskeletal tissues, but one major bottleneck is data analysis. Manual analysis is commonly deployed for assessment of muscle thickness, pennation angle and fascicle length in muscle ultrasonography images. However, manual analysis is somewhat subjective, laborious and requires thorough experience. We provide an openly available algorithm (DL_Track) to automatically analyze muscle architectural parameters in ultrasonography images or videos of human lower limb muscles. We trained two different neural networks (classic U-net [Ronneberger et al., 2021] and U-net with VGG16 [Simonyan & Zisserman, 2015] pretrained encoder) one to detect muscle fascicles and another to detect muscle aponeuroses using a set of labelled musculoskeletal ultrasound images. We included images from four different devices of the vastus lateralis, gastrocnemius medialis, tibilias anterior and soleus. In total, we included 310 images for the fascicle model and 570 images for the aponeuroses model, which we augmented to about 1,700 images per set. Each dataset was randomly split into a training and test set for model training, using a common 80/20 train/test split. We determined the best performing model based on intersection-over-union and loss metrics calculated during model training. We compared neural network predictions on an unseen test set consisting of 35 images to those obtained via manual analysis and two existing semi/automated analysis approaches (SMA and Ultratrack). Across the set of 35 unseen images, the mean differences between DL_Track and manual analysis were for fascicle length -2.4 mm (95% compatibility interval (CI) = -3.7 to -1.2), for pennation angle 0.6° (-0.2 to 1.4), and for muscle thickness -0.6 mm (-1.2 to 0.002). The corresponding values comparing DL_Track with SMA were for fascicle length 5.2 mm (1.3 to 9.0), for pennation angle -1.4° (-2.6 to -0.4) and for muscle thickness -0.9 mm (-1.5 to -0.3) respectively. ICC values between DL_Track and Ultratrack were 0.19 (0.00 to 0.35) for medial gastrocnemius passive contraction, 0.79 (0.77 to 0.81) for medial gastrocnemius maximal voluntary contraction, 0.88 (0.87 to 0.89) for calf raise, 0.67 (0.07 to 0.86) for medial gastrocnemius during walking, 0.80 (0.79 to 0.82) for tibialis passive plantar and dorsiflexion, and 0.85 (0.83 to 0.86) for tibialis anterior maximum voluntary contraction. Our method is fully automated and can estimate fascicle length, pennation angle and muscle thickness from single images or videos in multiple superficial muscles. For single images, the method gave results that are in agreement with those produced by SMA or manual analysis. Similarly, for videos, there was overlap between the results produced with Ultratrack and our method. In contrast to Ultratrack, DL_Track analyzes each frame independently of the previous frames, which might explain the observerd variability. References Ronneberger, O., Fischer, P., & Brox, T. (2021). U-Net: Convolutional networks for biomedical image segmentation. arXiv. https://doi.org/10.48550/arXiv.1505.04597 Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/arXiv.1409.1556
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yasmine完成签到 ,获得积分10
9秒前
33秒前
虚幻的亦旋完成签到,获得积分10
33秒前
加缪应助bobo0212采纳,获得30
34秒前
瑾沫流年发布了新的文献求助10
38秒前
GPTea应助科研通管家采纳,获得60
47秒前
星辰大海应助科研通管家采纳,获得10
47秒前
小二郎应助wangrswjx采纳,获得10
1分钟前
瑾沫流年完成签到,获得积分20
1分钟前
1分钟前
大妙妙完成签到 ,获得积分10
1分钟前
cokevvv发布了新的文献求助10
1分钟前
Yan应助cokevvv采纳,获得10
1分钟前
2分钟前
wangrswjx发布了新的文献求助10
2分钟前
玛琳卡迪马完成签到,获得积分10
2分钟前
seven发布了新的文献求助10
2分钟前
GPTea应助科研通管家采纳,获得20
2分钟前
wangrswjx完成签到,获得积分10
2分钟前
seven发布了新的文献求助10
3分钟前
11完成签到 ,获得积分10
3分钟前
Cookies完成签到,获得积分10
3分钟前
litieniu完成签到 ,获得积分10
3分钟前
精明寒松完成签到 ,获得积分10
4分钟前
Cope完成签到 ,获得积分10
4分钟前
庄海棠完成签到 ,获得积分10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
5分钟前
freq完成签到 ,获得积分10
5分钟前
善学以致用应助小小麦采纳,获得10
5分钟前
sidashu发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
皮皮完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
贺天完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753674
求助须知:如何正确求助?哪些是违规求助? 4097874
关于积分的说明 12678718
捐赠科研通 3811168
什么是DOI,文献DOI怎么找? 2104078
邀请新用户注册赠送积分活动 1129273
关于科研通互助平台的介绍 1006602