Comparison of “Human” and Artificial Intelligence Hand-and-Wrist Skeletal Age Estimation in an Epiphysiodesis Cohort

骨骺发育 骨龄 医学 队列 组内相关 残余物 数学 外科 算法 解剖 统计 骨科手术 内科学 再现性
作者
Dylan Kluck,Marina R. Makarov,Yassine Kanaan,Chan-Hee Jo,John G. Birch
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Wolters Kluwer]
卷期号:105 (3): 202-206 被引量:4
标识
DOI:10.2106/jbjs.22.00833
摘要

Background: We previously demonstrated that the White-Menelaus arithmetic formula combined with skeletal age as estimated with the Greulich and Pyle (GP) atlas was the most accurate method for predicting leg lengths and residual leg-length discrepancy (LLD) at maturity in a cohort of patients treated with epiphysiodesis. We sought to determine if an online artificial intelligence (AI)-based hand-and-wrist skeletal age system provided consistent readings and to evaluate how these readings influenced the prediction of the outcome of epiphysiodesis in this cohort. Methods: JPEG images of perioperative hand radiographs for 76 subjects were independently submitted by 2 authors to an AI skeletal age web site (http://physis.16bit.ai/). We compared the accuracy of the predicted long-leg length (after epiphysiodesis), short-leg length, and residual LLD with use of the White-Menelaus formula and either human-estimated GP or AI-estimated skeletal age. Results: The AI skeletal age readings had an intraclass correlation coefficient (ICC) of 0.99. AI-estimated skeletal age was generally greater than human-estimated GP skeletal age (average, 0.5 year greater in boys and 0.1 year greater in girls). Overall, the prediction accuracy was improved with AI readings; these differences reached significance for the short-leg and residual LLD prediction errors. Residual LLD was underestimated by ≥1.0 cm in 26 of 76 subjects when human-estimated GP skeletal age was used (range of underestimation, 1.0 to 3.2 cm), compared with only 10 of 76 subjects when AI skeletal age was used (range of underestimation, 1.1 cm to 2.2 cm) (p < 0.01). Residual LLD was overestimated by ≥1.0 cm in 3 of 76 subjects by both methods (range of overestimation, 1.0 to 1.3 cm for the human-estimated GP method and 1.0 to 1.6 cm for the AI method). Conclusions: The AI method of determining hand-and-wrist skeletal age was highly reproducible in this cohort and improved the accuracy of prediction of leg length and residual discrepancy when compared with traditional human interpretation of the GP atlas. This improvement could be explained by more accurate estimation of skeletal age via a machine-learning AI system calibrated with a large database. Level of Evidence: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
zho应助多啦啦采纳,获得10
4秒前
科研通AI5应助wangtinglk采纳,获得10
6秒前
明理易巧发布了新的文献求助10
7秒前
8秒前
容易饱发布了新的文献求助10
9秒前
abiden完成签到,获得积分10
10秒前
11秒前
12秒前
冰魂应助句号采纳,获得10
13秒前
SYLH应助lyp采纳,获得10
14秒前
16秒前
明理易巧完成签到,获得积分10
16秒前
奋斗寒天发布了新的文献求助10
20秒前
22秒前
科研小菜完成签到 ,获得积分10
22秒前
CodeCraft应助yoyo采纳,获得10
25秒前
君君发布了新的文献求助10
25秒前
wuyanzu发布了新的文献求助20
26秒前
wangw061应助泰裤辣采纳,获得10
27秒前
lyp完成签到 ,获得积分10
27秒前
星辰大海应助傲娇的凡采纳,获得10
27秒前
cdercder应助开心的万天采纳,获得10
28秒前
32秒前
Jasper应助yxli采纳,获得10
33秒前
JamesPei应助一二采纳,获得10
35秒前
wwwssswwwsss发布了新的文献求助10
37秒前
冰魂给舒心魂幽的求助进行了留言
41秒前
soapffz完成签到,获得积分10
43秒前
无花果应助annzl采纳,获得10
44秒前
小马甲应助bububusbu采纳,获得10
46秒前
orixero应助失眠芷蝶采纳,获得10
46秒前
正版王大大完成签到 ,获得积分20
47秒前
wangtinglk给wangtinglk的求助进行了留言
47秒前
47秒前
48秒前
科研通AI5应助西柚柠檬采纳,获得10
50秒前
52秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824368
求助须知:如何正确求助?哪些是违规求助? 3366662
关于积分的说明 10441995
捐赠科研通 3085959
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816447
科研通“疑难数据库(出版商)”最低求助积分说明 769640