Accurate and Efficient SOH Estimation for Retired Batteries

健康状况 电池(电) 人工神经网络 电压 反向传播 工程类 计算机科学 可靠性工程 人工智能 功率(物理) 电气工程 物理 量子力学
作者
Jen‐Hao Teng,Rong-Jhang Chen,Ping-Tse Lee,Che-Wei Hsu
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:16 (3): 1240-1240 被引量:9
标识
DOI:10.3390/en16031240
摘要

There will be an increasing number of retired batteries in the foreseeable future. Retired batteries can reduce pollution and be used to construct a battery cycle ecosystem. To use retired batteries more efficiently, it is critical to be able to determine their State of Health (SOH) precisely and speedily. SOH can be estimated accurately through a comprehensive and inefficient charge-and-discharge procedure. However, the comprehensive charge and discharge is a time-consuming process and will make the SOH assessment for many retired batteries unrealistic. This paper proposes an accurate and efficient SOH Estimation (SOH-E) method using the actual data of retired batteries. A battery data acquisition system is designed to acquire retired batteries’ comprehensive discharge and charge data. The acquired discharge data are separated into various time interval-segregated sub-data. Then, the specially designed features for SOH-E are extracted from the sub-data. Neural Networks (NNs) are trained using these sub-data. The retired batteries’ SOH levels are then estimated after the NNs’ training. The experiments described herein use retired lead–acid batteries. The batteries’ rated voltage and capacity are 12 V and 90 Ah, respectively. Different feature value extractions and time intervals that might affect the SOH-E accuracy and are tested. The Backpropagation NN (BPNN) and Long-Short-Term-Memory NN (LSTMNN) are designed to estimate SOH in this paper. The experimental results indicate that SOH can be calculated in 30 min. The Root-Mean-Square Errors (RMSEs) are less than 3%. The proposed SOH-E can help decrease pollution, extend the life cycle of a retired battery, and establish a battery cycle ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心不尤发布了新的文献求助10
1秒前
bk发布了新的文献求助10
1秒前
1秒前
2秒前
丘比特应助火速阿百川采纳,获得10
2秒前
巨人肩上发布了新的文献求助10
2秒前
2秒前
2秒前
zz完成签到 ,获得积分10
3秒前
mike封完成签到,获得积分10
3秒前
领导范儿应助Joy采纳,获得10
3秒前
aaqw_8完成签到,获得积分10
4秒前
范雅寒完成签到 ,获得积分10
5秒前
5秒前
在水一方应助lucindy采纳,获得30
5秒前
C2750完成签到,获得积分10
6秒前
MWY完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
wyx完成签到,获得积分10
7秒前
7秒前
火速阿百川完成签到,获得积分10
7秒前
靓丽瓦驴发布了新的文献求助10
8秒前
9秒前
Orange应助凌风采纳,获得10
9秒前
YYYY完成签到,获得积分10
9秒前
66135完成签到,获得积分10
10秒前
10秒前
隐形曼青应助风淡了采纳,获得10
12秒前
12秒前
神勇若雁发布了新的文献求助10
12秒前
12秒前
QQWQEQRQ发布了新的文献求助10
12秒前
十八发布了新的文献求助30
13秒前
asdfks完成签到,获得积分20
13秒前
becl发布了新的文献求助10
13秒前
btx发布了新的文献求助10
13秒前
箜箜完成签到,获得积分20
13秒前
yanglian2003完成签到,获得积分10
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828500
求助须知:如何正确求助?哪些是违规求助? 3370806
关于积分的说明 10465265
捐赠科研通 3090821
什么是DOI,文献DOI怎么找? 1700556
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770571