Finding critical nodes in a complex network from information diffusion and Matthew effect aggregation

计算机科学 谣言 复杂网络 稳健性(进化) 鉴定(生物学) 节点(物理) 分布式计算 网格 数据挖掘 数据科学 理论计算机科学 万维网 生物化学 化学 植物 公共关系 几何学 数学 结构工程 生物 政治学 工程类 基因
作者
Zejun Sun,Yanan Sun,Xinfeng Chang,Feifei Wang,Qiming Wang,Aman Ullah,Junming Shao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:233: 120927-120927 被引量:19
标识
DOI:10.1016/j.eswa.2023.120927
摘要

The identification of critical nodes is a crucial aspect in studying the spread of diseases, vaccination strategies, power grid robustness, advertisement placement, and rumor control. Consequently, this topic has become of immense interest in recent times. In the last decade, numerous methods have been proposed for identifying critical nodes, but each method has its own strengths and weaknesses, which can be attributed to the complex nature of networks and different scenarios. Therefore, it is unlikely that a single method can be applicable to all networks. To address the need for improved critical node identification in propagation scenarios, we propose a new approach called IDME (Information Diffusion and Matthew Effect aggregation). This approach is inspired by the real-world phenomenon of information diffusion and the Matthew effect. IDME simulates the dissemination of information in the real world and obtains information from multilayer neighbors, which is then aggregated using the Matthew effect. By considering its own information as well as that of its multilayer neighbors, IDME can more accurately identify critical nodes in networks while maintaining low time complexity. Experimental results on numerous real-world networks demonstrate that the IDME approach is effective in detecting critical nodes in networks and outperforms representative algorithms on most networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热爱发布了新的文献求助10
1秒前
emmmm发布了新的文献求助10
2秒前
称心千凝发布了新的文献求助10
2秒前
2秒前
棠梨煎雪完成签到,获得积分10
2秒前
Augenstern发布了新的文献求助10
2秒前
DAVE应助简简单单采纳,获得10
2秒前
zyp发布了新的文献求助10
2秒前
2秒前
3秒前
华仔应助伍子丐的猫采纳,获得10
3秒前
Hermione完成签到,获得积分10
4秒前
111完成签到,获得积分10
5秒前
JamesPei应助echo采纳,获得10
5秒前
5秒前
zz应助吐司万岁采纳,获得10
5秒前
暖阳完成签到,获得积分10
5秒前
吴云鹏发布了新的文献求助10
5秒前
6秒前
英姑应助纳斯达克采纳,获得10
6秒前
真实的麦片完成签到,获得积分10
6秒前
甜心关注了科研通微信公众号
7秒前
身体健康发布了新的文献求助10
7秒前
8秒前
Jimmy发布了新的文献求助10
8秒前
午后两点最热完成签到,获得积分10
8秒前
8秒前
qingzhiwu发布了新的文献求助10
9秒前
一一发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
Qin发布了新的文献求助10
11秒前
科研通AI5应助称心千凝采纳,获得10
11秒前
12秒前
传奇3应助含糊的蓉蓉采纳,获得10
12秒前
眼科女医生小魏完成签到 ,获得积分10
12秒前
科研通AI2S应助桀庚采纳,获得10
13秒前
小垃圾发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793624
求助须知:如何正确求助?哪些是违规求助? 3338571
关于积分的说明 10290280
捐赠科研通 3054974
什么是DOI,文献DOI怎么找? 1676259
邀请新用户注册赠送积分活动 804300
科研通“疑难数据库(出版商)”最低求助积分说明 761836