Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning

拉曼光谱 微塑料 随机森林 人工智能 萃取(化学) 机器学习 环境科学 鉴定(生物学) 生物系统 材料科学 计算机科学 分析化学(期刊) 环境化学 遥感 化学 色谱法 物理 地质学 光学 植物 生物
作者
Lifang Xie,Siheng Luo,Yangyang Liu,Xuejun Ruan,Kedong Gong,Qiuyue Ge,Kejian Li,Ventsislav K. Valev,Guokun Liu,Liwu Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18203-18214 被引量:54
标识
DOI:10.1021/acs.est.3c03210
摘要

The increasing prevalence of nanoplastics in the environment underscores the need for effective detection and monitoring techniques. Current methods mainly focus on microplastics, while accurate identification of nanoplastics is challenging due to their small size and complex composition. In this work, we combined highly reflective substrates and machine learning to accurately identify nanoplastics using Raman spectroscopy. Our approach established Raman spectroscopy data sets of nanoplastics, incorporated peak extraction and retention data processing, and constructed a random forest model that achieved an average accuracy of 98.8% in identifying nanoplastics. We validated our method with tap water spiked samples, achieving over 97% identification accuracy, and demonstrated the applicability of our algorithm to real-world environmental samples through experiments on rainwater, detecting nanoscale polystyrene (PS) and polyvinyl chloride (PVC). Despite the challenges of processing low-quality nanoplastic Raman spectra and complex environmental samples, our study demonstrated the potential of using random forests to identify and distinguish nanoplastics from other environmental particles. Our results suggest that the combination of Raman spectroscopy and machine learning holds promise for developing effective nanoplastic particle detection and monitoring strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Hello应助黄黄采纳,获得10
2秒前
研友_LMo6rZ完成签到,获得积分20
2秒前
ganjqly应助一段微风采纳,获得10
5秒前
凛之宵星发布了新的文献求助10
5秒前
5秒前
nns发布了新的文献求助10
7秒前
我是老大应助悲凉的妙松采纳,获得10
8秒前
吃猫的鱼发布了新的文献求助10
8秒前
8秒前
kunny完成签到 ,获得积分10
9秒前
陈佳琪应助nns采纳,获得10
11秒前
凛之宵星完成签到,获得积分10
12秒前
14秒前
14秒前
CodeCraft应助qiandi采纳,获得100
16秒前
共享精神应助喜悦磬采纳,获得10
19秒前
赘婿应助王安娜采纳,获得10
20秒前
斯文败类应助hh采纳,获得10
21秒前
威武青亦发布了新的文献求助30
22秒前
贰鸟应助Yezo采纳,获得10
26秒前
27秒前
FashionBoy应助dhhaoyihong采纳,获得10
27秒前
27秒前
29秒前
29秒前
JamesPei应助rrrrr采纳,获得10
30秒前
30秒前
陈佳琪应助su采纳,获得10
33秒前
王安娜发布了新的文献求助10
33秒前
喜悦磬发布了新的文献求助10
33秒前
37秒前
呱兮兮完成签到,获得积分10
39秒前
lfjh完成签到,获得积分10
40秒前
烟花应助傻傻的沛容采纳,获得10
41秒前
rrrrr发布了新的文献求助10
42秒前
43秒前
44秒前
Hale完成签到,获得积分0
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942946
求助须知:如何正确求助?哪些是违规求助? 3487999
关于积分的说明 11046549
捐赠科研通 3218661
什么是DOI,文献DOI怎么找? 1779057
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542