Diffusion-driven Incomplete Multimodal Learning for Air Quality Prediction

扩散 质量(理念) 计算机科学 空气质量指数 人工智能 机器学习 物理 气象学 热力学 量子力学
作者
Jinxiao Fan,Mengshi Qi,Liang Liu,Huadóng Ma
出处
期刊:ACM transactions on the internet of things [Association for Computing Machinery]
卷期号:6 (1): 1-24 被引量:3
标识
DOI:10.1145/3702243
摘要

Predicting air quality using multimodal data is crucial to comprehensively capture the diverse factors influencing atmospheric conditions. Therefore, this study introduces a multimodal learning framework that integrates outdoor images with traditional ground-based observations to improve the accuracy and reliability of air quality predictions. However, aligning and fusing these heterogeneous data sources poses a formidable challenge, further exacerbated by pervasive data incompleteness issues in practice. In this article, we propose a novel incomplete multimodal learning approach (iMMAir) to recovery missing data for robust air quality prediction. Specifically, we first design a shallow feature extractor to capture modal-specific features within the latent representation space. Then we develop a conditional diffusion-driven recovery module to mitigate the distribution gap between the recovered and true data. This module further incorporates two conditional constraints of temporal correlation and semantic consistency for effective modal completion. Finally, we reconstruct incomplete modalities and fuse available data using a multimodal transformer network to predict the air quality. To alleviate the modality imbalance problem, we employ an adaptive gradient modulation strategy to adjust the optimization of each modality. Experimental results demonstrate that iMMAir significantly reduces prediction errors, outperforming baseline models by an average of 5.6% and 2.5% in air quality regression and classification tasks. Our source code and data are available at https://github.com/pestasu/IMMAir .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bloved发布了新的文献求助10
2秒前
摇摇摇不匀完成签到 ,获得积分10
2秒前
4秒前
freesia发布了新的文献求助10
4秒前
合适夜柳完成签到 ,获得积分10
5秒前
源源完成签到,获得积分10
5秒前
Green完成签到,获得积分10
6秒前
追梦完成签到 ,获得积分10
6秒前
上官若男应助cathyfly1006采纳,获得30
7秒前
紫菜完成签到,获得积分10
8秒前
小青椒应助科研通管家采纳,获得20
10秒前
所所应助科研通管家采纳,获得10
10秒前
changping应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
梨花月应助科研通管家采纳,获得10
11秒前
California完成签到 ,获得积分10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
CipherSage应助123456采纳,获得10
14秒前
冰姗完成签到,获得积分10
14秒前
黄紫红完成签到 ,获得积分10
15秒前
Silence完成签到 ,获得积分10
15秒前
慕青应助敏感的凝天采纳,获得10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212768
求助须知:如何正确求助?哪些是违规求助? 4388811
关于积分的说明 13664730
捐赠科研通 4249506
什么是DOI,文献DOI怎么找? 2331607
邀请新用户注册赠送积分活动 1329321
关于科研通互助平台的介绍 1282787