Frequency‐specific dual‐attention based adversarial network for blood oxygen level‐dependent time series prediction

人类连接体项目 功能磁共振成像 计算机科学 默认模式网络 血氧水平依赖性 大脑活动与冥想 人工智能 机器学习 模式识别(心理学) 神经科学 脑电图 功能连接 心理学
作者
Weihao Zheng,Cong Bao,Renhui Mu,Jun Wang,Tongtong Li,Ziyang Zhao,Zhijun Yao,Bin Hu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (14)
标识
DOI:10.1002/hbm.70032
摘要

Abstract Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end‐to‐end frequency‐specific dual‐attention‐based adversarial network (FDAA‐Net) to extend the time series of existing blood oxygen level‐dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency‐dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial–temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA‐Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA‐Net effectively overcame linear frequency‐specific challenges and outperformed other popular prediction models. Test–retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA‐Net using short‐term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米共完成签到 ,获得积分10
刚刚
毛小驴完成签到,获得积分10
1秒前
lxl1996完成签到,获得积分10
1秒前
wwewew完成签到,获得积分10
2秒前
清爽的如天完成签到,获得积分10
2秒前
慕小宇完成签到,获得积分20
2秒前
烟花应助张张采纳,获得10
3秒前
tttt发布了新的文献求助10
3秒前
glomming完成签到 ,获得积分10
4秒前
韦雨君发布了新的文献求助20
4秒前
5秒前
5秒前
冉柒发布了新的文献求助10
5秒前
傲娇的刺猬完成签到,获得积分20
5秒前
NexusExplorer应助朱哦哦采纳,获得10
5秒前
hcf_yicheng完成签到,获得积分10
6秒前
Healer完成签到 ,获得积分10
6秒前
6秒前
ycg完成签到,获得积分10
6秒前
zhaoshao完成签到,获得积分10
7秒前
7秒前
Lee完成签到 ,获得积分10
7秒前
gege完成签到 ,获得积分10
7秒前
yyy完成签到,获得积分20
7秒前
8秒前
wanci应助任性的不愁采纳,获得20
8秒前
9秒前
研友_gnv61n完成签到,获得积分0
9秒前
10秒前
yufanhui应助慕小宇采纳,获得10
10秒前
十一完成签到 ,获得积分10
10秒前
10秒前
脑洞疼应助害羞的安萱采纳,获得10
11秒前
沉积岩完成签到,获得积分10
11秒前
Orange应助清风徐来采纳,获得10
12秒前
香蕉觅云应助chen采纳,获得10
12秒前
yyy发布了新的文献求助30
12秒前
12秒前
JerryZ发布了新的文献求助30
12秒前
彭于晏应助RuiXxxxx采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534