亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Continual Learning With Knowledge Distillation: A Survey

蒸馏 计算机科学 化学 色谱法
作者
Songze Li,Tonghua Su,Xu-Yao Zhang,Zhongjie Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:2
标识
DOI:10.1109/tnnls.2024.3476068
摘要

The foremost challenge in continual learning is to mitigate catastrophic forgetting, allowing a model to retain knowledge of previous tasks while learning new tasks. Knowledge distillation (KD), a form of regularization, has gained significant attention for its ability to maintain a model's performance on previous tasks by mimicking the outputs of earlier models during the learning of new tasks, thus reducing forgetting. This article offers a comprehensive survey of continual learning methods employing KD within the realm of image classification. We provide a detailed analysis of how KD is utilized in continual learning methods, categorizing its application into three distinct paradigms. Besides, we classify these methods based on the type of knowledge source used and thoroughly examine how KD consolidates memory in continual learning from the perspective of loss functions. In addition, we have conducted extensive experiments on CIFAR-100, TinyImageNet, and ImageNet-100 across ten KD-integrated continual learning methods to analyze the role of KD in continual learning, and we have further discussed its effectiveness in other continual learning tasks. Our extensive experimental evidence demonstrates that KD plays a crucial role in mitigating forgetting in continual learning and substantiates that, when used with data replay, classification bias adversely affects the effectiveness of KD, whereas employing a separated softmax loss can significantly enhance its efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
靓丽奇迹完成签到 ,获得积分10
44秒前
liuliu发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
充电宝应助高大的羿采纳,获得10
2分钟前
Kiri_0661发布了新的文献求助10
3分钟前
高大的羿完成签到,获得积分20
3分钟前
科研通AI6应助小蜻蜓采纳,获得30
3分钟前
科研通AI6应助小蜻蜓采纳,获得30
3分钟前
科研通AI6应助PALMS采纳,获得10
3分钟前
3分钟前
sissie发布了新的文献求助10
3分钟前
hb完成签到,获得积分10
3分钟前
orixero应助sissie采纳,获得10
3分钟前
积极的西牛完成签到,获得积分10
3分钟前
小二郎应助积极的西牛采纳,获得10
4分钟前
yyw完成签到,获得积分10
4分钟前
LPPQBB应助科研通管家采纳,获得200
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
yyw发布了新的文献求助10
4分钟前
4分钟前
小杨完成签到 ,获得积分10
4分钟前
ooooozhubi完成签到 ,获得积分10
4分钟前
drirshad完成签到,获得积分10
4分钟前
Dominant完成签到,获得积分10
5分钟前
共享精神应助慕青采纳,获得10
5分钟前
5分钟前
干净的烧鹅完成签到,获得积分10
5分钟前
小蜻蜓发布了新的文献求助30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357135
求助须知:如何正确求助?哪些是违规求助? 4488655
关于积分的说明 13972423
捐赠科研通 4389809
什么是DOI,文献DOI怎么找? 2411723
邀请新用户注册赠送积分活动 1404285
关于科研通互助平台的介绍 1378445