亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Continual Learning With Knowledge Distillation: A Survey

蒸馏 计算机科学 化学 色谱法
作者
Songze Li,Tonghua Su,Xu-Yao Zhang,Zhongjie Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:2
标识
DOI:10.1109/tnnls.2024.3476068
摘要

The foremost challenge in continual learning is to mitigate catastrophic forgetting, allowing a model to retain knowledge of previous tasks while learning new tasks. Knowledge distillation (KD), a form of regularization, has gained significant attention for its ability to maintain a model's performance on previous tasks by mimicking the outputs of earlier models during the learning of new tasks, thus reducing forgetting. This article offers a comprehensive survey of continual learning methods employing KD within the realm of image classification. We provide a detailed analysis of how KD is utilized in continual learning methods, categorizing its application into three distinct paradigms. Besides, we classify these methods based on the type of knowledge source used and thoroughly examine how KD consolidates memory in continual learning from the perspective of loss functions. In addition, we have conducted extensive experiments on CIFAR-100, TinyImageNet, and ImageNet-100 across ten KD-integrated continual learning methods to analyze the role of KD in continual learning, and we have further discussed its effectiveness in other continual learning tasks. Our extensive experimental evidence demonstrates that KD plays a crucial role in mitigating forgetting in continual learning and substantiates that, when used with data replay, classification bias adversely affects the effectiveness of KD, whereas employing a separated softmax loss can significantly enhance its efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
霏霏不是菲菲给霏霏不是菲菲的求助进行了留言
14秒前
优秀爆米花完成签到,获得积分10
22秒前
28秒前
Ava应助科研通管家采纳,获得10
28秒前
MET1应助科研通管家采纳,获得10
28秒前
MET1应助科研通管家采纳,获得10
28秒前
MET1应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
54秒前
九天应元完成签到 ,获得积分10
56秒前
bobo呀发布了新的文献求助10
1分钟前
1分钟前
1分钟前
今夕何夕完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Chen发布了新的文献求助10
1分钟前
慕青应助aaa采纳,获得10
1分钟前
1分钟前
猪猪完成签到 ,获得积分10
1分钟前
aaa发布了新的文献求助10
1分钟前
Achu发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
嘿嘿应助科研通管家采纳,获得10
2分钟前
MET1应助科研通管家采纳,获得10
2分钟前
MET1应助科研通管家采纳,获得10
2分钟前
MET1应助科研通管家采纳,获得10
2分钟前
Ava应助Mercury采纳,获得10
2分钟前
2分钟前
2分钟前
Mercury发布了新的文献求助10
2分钟前
2分钟前
852应助小C采纳,获得10
2分钟前
小萌兽发布了新的文献求助10
2分钟前
小C给小C的求助进行了留言
2分钟前
3分钟前
Chen完成签到,获得积分10
3分钟前
小蘑菇应助小萌兽采纳,获得10
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4067415
求助须知:如何正确求助?哪些是违规求助? 3606414
关于积分的说明 11450886
捐赠科研通 3327660
什么是DOI,文献DOI怎么找? 1829477
邀请新用户注册赠送积分活动 899393
科研通“疑难数据库(出版商)”最低求助积分说明 819595