An Evidence Gap Map of Experience-based Evidence of Health Resource Allocation in Disaster and Humanitarian Settings

奇纳 资源配置 浪涌容量 范围(计算机科学) 资源(消歧) 梅德林 相关性(法律) 人道主义援助 包裹体(矿物) 斯科普斯 数据提取 计算机科学 政治学 业务 医学 心理学 疾病 社会心理学 2019年冠状病毒病(COVID-19) 传染病(医学专业) 法学 程序设计语言 病理 计算机网络
作者
Zachary Horn,Jamie Ranse,Andrea P. Marshall
出处
期刊:Disaster Medicine and Public Health Preparedness [Cambridge University Press]
卷期号:18 被引量:4
标识
DOI:10.1017/dmp.2024.103
摘要

Abstract Objective The aim of this review is to identify, evaluate, and graphically display gaps in the literature related to scarce health resource allocation in humanitarian aid settings. Methods A systematic search strategy was utilized in MEDLINE (via Ovid), Scopus, EMBASE, CINAHL Complete, and ProQuest Central. Articles were reviewed by 2 reviewers with a third reviewer remedying any screening conflicts. Articles meeting inclusion criteria underwent data extraction to facilitate evaluation of the scope, nature, and quality of experience-based evidence for health resource allocation in humanitarian settings. Finally, articles were mapped on a matrix to display evidence graphically. Results The search strategy identified 6093 individual sources, leaving 4000 for screening after removal of duplicates. Following full-text screening, 12 sources were included. Mapping extracted data according to surge capacity domains demonstrated that all 4 domains were reflected most of all the staff domain. Much of the identified data was presented without adhering to a clear structure or nomenclature. Finally, the mapping suggested potential incompleteness of surge capacity constructs in humanitarian response settings. Conclusions Through this review, we identified a gap in evidence available to address challenges associated with scarce resource allocation in humanitarian settings. In addition to presenting the distribution of existing literature, the review demonstrated the relevance of surge capacity and resource allocation principles underpinning the developed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初心完成签到,获得积分10
刚刚
康师傅冰红茶完成签到,获得积分10
1秒前
调皮从筠发布了新的文献求助10
1秒前
安详世立发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
斯文败类应助小波采纳,获得10
1秒前
曲曲完成签到,获得积分10
2秒前
1212完成签到,获得积分10
2秒前
LNE发布了新的文献求助10
3秒前
呆萌幼晴发布了新的文献求助10
3秒前
123456完成签到,获得积分10
3秒前
雨辰完成签到 ,获得积分10
3秒前
4秒前
彩色的乘风完成签到,获得积分20
5秒前
6秒前
評評发布了新的文献求助10
6秒前
彭于晏应助jjjjj采纳,获得10
6秒前
大个应助1212采纳,获得10
6秒前
教授王发布了新的文献求助10
6秒前
幸福胡萝卜完成签到,获得积分10
7秒前
7秒前
药大小金鱼完成签到,获得积分10
7秒前
刘华银完成签到,获得积分10
7秒前
8秒前
超帅的薯片完成签到,获得积分10
8秒前
研友_VZG7GZ应助yi417采纳,获得10
9秒前
思源应助up采纳,获得10
9秒前
xinyuxxx完成签到,获得积分10
9秒前
Captainhana完成签到,获得积分10
10秒前
筝zheng完成签到,获得积分10
10秒前
RDF完成签到,获得积分10
10秒前
suyu发布了新的文献求助10
10秒前
哼哼嘿嘿完成签到,获得积分10
11秒前
11秒前
11秒前
orixero应助Rauf采纳,获得10
11秒前
动听的鞋垫完成签到,获得积分10
13秒前
aabsd发布了新的文献求助10
13秒前
烟花应助踏实的蜜蜂采纳,获得10
13秒前
Owen应助savesunshine1022采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708191
求助须知:如何正确求助?哪些是违规求助? 5187368
关于积分的说明 15252886
捐赠科研通 4861233
什么是DOI,文献DOI怎么找? 2609314
邀请新用户注册赠送积分活动 1559937
关于科研通互助平台的介绍 1517716