Theoretical Study on the Electrocatalytic CO2 Reduction Mechanism of Single-Atom Co Complexed Carbon-Based (Co–Nχ@C) Catalysts Supported on Carbon Nanotubes

催化作用 碳纳米管 材料科学 石墨烯 电催化剂 碳纤维 化学工程 纳米技术 电化学 无机化学 化学 物理化学 电极 有机化学 复合数 工程类 复合材料
作者
Qian-Hong Guo,Guilin Zhang,Yang Wu,Xiaoqin Liang,Laicai Li,Jiajia Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (35): 46270-46279 被引量:2
标识
DOI:10.1021/acsami.4c08246
摘要

Electrocatalytic CO2 reduction serves as an effective strategy to tackle energy crises and mitigate greenhouse gas effects. The development of efficient and cost-effective electrocatalysts has been a research hotspot in the field. In this study, we designed four Co-doped single-atom catalysts (Co–Nχ@C) using carbon nanotubes as carriers, these catalysts included tri- and dicoordinated N-doped carbon nanoribbons, as well as tri- and dicoordinated N-doped graphene, respectively denoted as H3(H2)-Co/CNT and 3(2)-Co/CNT. The stable configurations of these Co–Nχ@C catalysts were optimized using the PBE+D3 method. Additionally, we explored the reaction mechanisms of these catalysts for the electrocatalytic reduction of CO2 into four C1 products, including CO, HCOOH, CH3OH and CH4, in detail. Upon comparing the limiting potentials (UL) across the Co–Nχ@C catalysts, the activity sequence for the electrocatalytic reduction of CO2 was H2–Co/CNT > 3-Co/CNT > H3–Co/CNT > 2-Co/CNT. Meanwhile, our investigation of the hydrogen evolution reaction (HER) with four catalysts elucidated the influence of acidic conditions on the electrocatalytic CO2 reduction process. Specifically, controlling the acidity of the solution was crucial when using the H3–Co/CNT and H2–Co/CNT catalysts, while the 3-Co/CNT and 2-Co/CNT catalysts were almost unaffected by the solution's acidity. We hope that our research will provide a theoretical foundation for designing more effective CO2 reduction electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
nnqq发布了新的文献求助10
1秒前
双楠发布了新的文献求助10
1秒前
3秒前
橘子味雪糕完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
善学以致用应助elysia采纳,获得10
6秒前
烟花应助公冶笑白采纳,获得10
6秒前
paramecium86发布了新的文献求助10
6秒前
bkagyin应助PanCiro采纳,获得10
8秒前
8秒前
8秒前
Mengmeng发布了新的文献求助10
9秒前
现实马里奥完成签到,获得积分10
10秒前
潘善若发布了新的文献求助10
10秒前
nnqq完成签到,获得积分10
10秒前
10秒前
liangyuting发布了新的文献求助10
11秒前
Xiaoyu发布了新的文献求助10
12秒前
12秒前
lym54发布了新的文献求助10
13秒前
乐乐应助潘善若采纳,获得10
13秒前
明理的从波完成签到,获得积分10
14秒前
kzf完成签到,获得积分10
15秒前
王博士完成签到,获得积分10
16秒前
体贴的青烟完成签到,获得积分10
16秒前
16秒前
坚强的代曼完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
顾矜应助vivi采纳,获得30
20秒前
20秒前
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835256
求助须知:如何正确求助?哪些是违规求助? 3377691
关于积分的说明 10500085
捐赠科研通 3097330
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820660
科研通“疑难数据库(出版商)”最低求助积分说明 772174