Optimal Large Language Model Characteristics to Balance Accuracy and Energy Use for Sustainable Medical Applications

医学 平衡(能力) 能量平衡 物理医学与康复 生态学 生物
作者
Florence X. Doo,Dharmam Savani,Adway Kanhere,Ruth C. Carlos,Anupam Joshi,Paul H. Yi,Vishwa S. Parekh
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:3
标识
DOI:10.1148/radiol.240320
摘要

Background Large language models (LLMs) for medical applications use unknown amounts of energy, which contribute to the overall carbon footprint of the health care system. Purpose To investigate the tradeoffs between accuracy and energy use when using different LLM types and sizes for medical applications. Materials and Methods This retrospective study evaluated five different billion (B)-parameter sizes of two open-source LLMs (Meta's Llama 2, a general-purpose model, and LMSYS Org's Vicuna 1.5, a specialized fine-tuned model) using chest radiograph reports from the National Library of Medicine's Indiana University Chest X-ray Collection. Reports with missing demographic information and missing or blank files were excluded. Models were run on local compute clusters with visual computing graphic processing units. A single-task prompt explained clinical terminology and instructed each model to confirm the presence or absence of each of the 13 CheXpert disease labels. Energy use (in kilowatt-hours) was measured using an open-source tool. Accuracy was assessed with 13 CheXpert reference standard labels for diagnostic findings on chest radiographs, where overall accuracy was the mean of individual accuracies of all 13 labels. Efficiency ratios (accuracy per kilowatt-hour) were calculated for each model type and size. Results A total of 3665 chest radiograph reports were evaluated. The Vicuna 1.5 7B and 13B models had higher efficiency ratios (737.28 and 331.40, respectively) and higher overall labeling accuracy (93.83% [3438.69 of 3665 reports] and 93.65% [3432.38 of 3665 reports], respectively) than that of the Llama 2 models (7B: efficiency ratio of 13.39, accuracy of 7.91% [289.76 of 3665 reports]; 13B: efficiency ratio of 40.90, accuracy of 74.08% [2715.15 of 3665 reports]; 70B: efficiency ratio of 22.30, accuracy of 92.70% [3397.38 of 3665 reports]). Vicuna 1.5 7B had the highest efficiency ratio (737.28 vs 13.39 for Llama 2 7B). The larger Llama 2 70B model used more than seven times the energy of its 7B counterpart (4.16 kWh vs 0.59 kWh) with low overall accuracy, resulting in an efficiency ratio of only 22.30. Conclusion Smaller fine-tuned LLMs were more sustainable than larger general-purpose LLMs, using less energy without compromising accuracy, highlighting the importance of LLM selection for medical applications. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若枫发布了新的文献求助10
1秒前
1秒前
yy发布了新的文献求助10
1秒前
暮吟发布了新的文献求助10
2秒前
我是老大应助清爽语柳采纳,获得10
3秒前
来自3602完成签到,获得积分10
4秒前
5秒前
小菜鸡完成签到 ,获得积分10
8秒前
kexuedagz完成签到,获得积分10
9秒前
9秒前
1233完成签到,获得积分10
9秒前
pluto应助shin0324采纳,获得10
11秒前
李健应助大力元霜采纳,获得10
11秒前
爆米花应助清秀的机器猫采纳,获得10
11秒前
12秒前
专一的访文完成签到,获得积分10
12秒前
guozizi发布了新的文献求助10
12秒前
复杂天真完成签到 ,获得积分10
12秒前
13秒前
13秒前
YSY完成签到,获得积分10
14秒前
清爽语柳发布了新的文献求助10
14秒前
ding应助ss采纳,获得10
15秒前
Able阿拉基完成签到,获得积分10
15秒前
15秒前
张若旸发布了新的文献求助10
16秒前
jiangci完成签到,获得积分10
17秒前
18秒前
故渊完成签到,获得积分10
19秒前
19秒前
天天快乐应助俏皮的曼安采纳,获得10
19秒前
tao发布了新的文献求助10
19秒前
科研路人锋完成签到 ,获得积分10
20秒前
blackbear发布了新的文献求助10
20秒前
20秒前
张琦发布了新的文献求助10
21秒前
21秒前
小柒完成签到 ,获得积分10
22秒前
怪怪发布了新的文献求助10
22秒前
华仔应助早安采纳,获得10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846452
求助须知:如何正确求助?哪些是违规求助? 3388937
关于积分的说明 10555074
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824842
科研通“疑难数据库(出版商)”最低求助积分说明 775068