Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production

石墨氮化碳 光催化 过氧化氢 氮化碳 制氢 材料科学 氮化物 碳纤维 生产(经济) 环境科学 化学 纳米技术 催化作用 复合材料 复合数 有机化学 图层(电子) 经济 宏观经济学 生物化学
作者
Tengyang Gao,Degui Zhao,Sàisài Yuán,Ming Zheng,Xianjuan Pu,Liang Tang,Zhendong Lei
出处
期刊:Carbon energy [Wiley]
卷期号:6 (11) 被引量:66
标识
DOI:10.1002/cey2.596
摘要

Abstract Hydrogen peroxide (H 2 O 2 ) is one of the 100 most important chemicals in the world with high energy density and environmental friendliness. Compared with anthraquinone oxidation, direct synthesis of H 2 O 2 with hydrogen (H 2 ) and oxygen (O 2 ), and electrochemical methods, photocatalysis has the characteristics of low energy consumption, easy operation and less pollution, and broad application prospects in H 2 O 2 generation. Various photocatalysts, such as titanium dioxide (TiO 2 ), graphitic carbon nitride (g‐C 3 N 4 ), metal‐organic materials, and nonmetallic materials, have been studied for H 2 O 2 production. Among them, g‐C 3 N 4 materials, which are simple to synthesize and functionalize, have attracted wide attention. The electronic band structure of g‐C 3 N 4 shows a bandgap of 2.77 eV, a valence band maximum of 1.44 V, and a conduction band minimum of −1.33 V, which theoretically meets the requirements for hydrogen peroxide production. In comparison to semiconductor materials like TiO 2 (3.2 eV), this material has a smaller bandgap, which results in a more efficient response to visible light. However, the photocatalytic activity of g‐C 3 N 4 and the yield of H 2 O 2 were severely inhibited by the electron‐hole pair with high recombination rate, low utilization rate of visible light, and poor selectivity of products. Although previous reviews also presented various strategies to improve photocatalytic H 2 O 2 production, they did not systematically elaborate the inherent relationship between the control strategies and their energy band structure. From this point of view, this article focuses on energy band engineering and reviews the latest research progress of g‐C 3 N 4 photocatalytic H 2 O 2 production. On this basis, a strategy to improve the H 2 O 2 production by g‐C 3 N 4 photocatalysis is proposed through morphology control, crystallinity and defect, and doping, combined with other materials and other strategies. Finally, the challenges and prospects of industrialization of g‐C 3 N 4 photocatalytic H 2 O 2 production are discussed and envisioned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fatalite发布了新的文献求助30
1秒前
1秒前
xj_yjl完成签到,获得积分10
1秒前
开心妍发布了新的文献求助10
1秒前
小团子完成签到,获得积分20
2秒前
Ava应助张静怡采纳,获得10
2秒前
果实发布了新的文献求助10
2秒前
wuji2077完成签到,获得积分10
2秒前
3秒前
天天快乐应助猪四郎采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
JJ发布了新的文献求助10
4秒前
jing发布了新的文献求助10
4秒前
4秒前
浮游应助普拉亚采纳,获得10
4秒前
4秒前
李健的小迷弟应助mof采纳,获得10
5秒前
朴素的半梦关注了科研通微信公众号
6秒前
朴素的半梦关注了科研通微信公众号
6秒前
dapan0622完成签到,获得积分10
7秒前
7秒前
可爱的函函应助lj采纳,获得10
7秒前
wufel2发布了新的文献求助10
7秒前
可爱的函函应助QiuShuiCi采纳,获得10
8秒前
caixiayin发布了新的文献求助10
8秒前
Nini完成签到 ,获得积分10
8秒前
酷波er应助艾席文采纳,获得10
9秒前
Owen应助liuliu采纳,获得10
9秒前
莽莽发布了新的文献求助10
10秒前
王小敏敏儿完成签到,获得积分10
10秒前
天天快乐应助蛋堡采纳,获得10
10秒前
ATOM完成签到,获得积分10
10秒前
10秒前
annian完成签到,获得积分10
10秒前
Owen应助WSDSG采纳,获得10
10秒前
手握春夏给手握春夏的求助进行了留言
10秒前
ELITOmiko完成签到,获得积分10
11秒前
科研通AI2S应助Mtt采纳,获得10
11秒前
无辜的从云完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473503
求助须知:如何正确求助?哪些是违规求助? 4575665
关于积分的说明 14353545
捐赠科研通 4503157
什么是DOI,文献DOI怎么找? 2467534
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429357