P10.22.B PREDICTING INTRAOPERATIVE 5-ALA-INDUCED TUMOR FLUORESCENCE VIA MRI AND DEEP LEARNING IN GLIOMAS WITH RADIOGRAPHIC LOWER-GRADE CHARACTERISTICS

医学 胶质瘤 射线照相术 放射科 核医学 癌症研究
作者
Eric Suero Molina,Ghasem Azemi,Zeynep Özdemi̇r,Carlo Russo,A Valls Chavarria,Sidong Liu,Christian Thomas,Walter Stummer,Antonio Di Ieva
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_5): v60-v60
标识
DOI:10.1093/neuonc/noae144.198
摘要

Abstract BACKGROUND Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely resected to avoid undergrading. We aimed to analyze whether a deep learning model can predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). Material and Methods: The MRI images of gliomas lacking high-grade characteristics (necrosis, extended contrast-enhancement, a.o.) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a 10-fold cross-validation procedure. RESULTS We evaluated a cohort of 163 glioma patients categorized as fluorescent (n=83) or non-fluorescent (n=80). Our proposed approach’s performance was evaluated using metrics such as mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSION Our findings highlight the potential of a U-Net model, coupled with a random forest classifier, for intraoperative fluorescence prediction. We achieved good accuracy using advanced techniques such as deep learning-based tumor segmentation and Variational Autoencoder for radiomics feature extraction. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
2秒前
北地风情完成签到 ,获得积分10
2秒前
Adaring完成签到,获得积分10
3秒前
Ge0085发布了新的文献求助30
4秒前
事上炼应助科研通管家采纳,获得20
5秒前
知行合一完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
swan发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
erji发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
yang应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
小幸运发布了新的文献求助10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SadieMing应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
事上炼应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
风清扬应助科研通管家采纳,获得30
7秒前
yang应助科研通管家采纳,获得10
7秒前
ltz应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497239
求助须知:如何正确求助?哪些是违规求助? 4594744
关于积分的说明 14446447
捐赠科研通 4527478
什么是DOI,文献DOI怎么找? 2480884
邀请新用户注册赠送积分活动 1465248
关于科研通互助平台的介绍 1437903