151960

计算机科学 数学
作者
Guihong Lui,Changjiang Pan,Xiaoyan Zhang,Qiangkui Leng
出处
期刊:Bulletin of The Polish Academy of Sciences-technical Sciences [De Gruyter Open]
卷期号:: 151960-151960
标识
DOI:10.24425/bpasts.2024.151960
摘要

Pedestrian trajectory prediction provides crucial data support for the development of smart cities. Existing pedestrian trajectory prediction methods often overlook the different types of pedestrian interactions and the micro-level spatial-temporal relationships when handling the interaction information in spatial dimension and temporal dimension. The model employs a spatial-temporal attention-based fusion graph convolutional framework to predict future pedestrian trajectories. For the different types of local and global relationships between pedestrians, it first employs spatial-temporal attention mechanisms to capture dependencies in pedestrian sequence data, obtaining the social interactions of pedestrians in spatial contexts and the movement trends of pedestrians over time. Subsequently, a fusion graph convolutional module merges the temporal weight matrix and the spatial weight matrix into a spatial-temporal fusion feature map. Finally, a decoder section utilizes TimeStacked Convolutional Neural Networks to predict future trajectories. The final validation on the ETH and UCY datasets yielded experimental results with an Average Displacement Error(ADE) of 0.34 and an Final Displacement Error(FDE) of 0.55. The visualization results further demonstrated the rationality of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助等待盼雁采纳,获得10
1秒前
1秒前
zy完成签到,获得积分10
1秒前
1秒前
小二郎应助归雁采纳,获得10
2秒前
2秒前
2秒前
2秒前
la完成签到,获得积分10
3秒前
3秒前
3秒前
一一应助真的不会采纳,获得10
3秒前
3秒前
千寒完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
zhouyu发布了新的文献求助10
6秒前
yaoyao关注了科研通微信公众号
7秒前
海拾月发布了新的文献求助30
7秒前
carat发布了新的文献求助10
7秒前
7秒前
blueming发布了新的文献求助10
7秒前
mmz666发布了新的文献求助10
7秒前
还没想好发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
7秒前
7秒前
7秒前
大力山槐完成签到,获得积分10
8秒前
缥缈的半芹完成签到,获得积分20
8秒前
LLL完成签到,获得积分10
9秒前
传奇3应助淡然钢笔采纳,获得10
9秒前
10秒前
云阳发布了新的文献求助10
10秒前
WuHong发布了新的文献求助10
10秒前
11秒前
yuhang发布了新的文献求助10
12秒前
大大发布了新的文献求助10
12秒前
良辰应助缥缈的半芹采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838966
求助须知:如何正确求助?哪些是违规求助? 3381420
关于积分的说明 10518123
捐赠科研通 3100845
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821928
科研通“疑难数据库(出版商)”最低求助积分说明 773056