Exploring Shape Embedding for Cloth-Changing Person Re-Identification via 2D-3D Correspondences

嵌入 人工智能 计算机科学 像素 计算机视觉 曲面(拓扑) 分割 鉴定(生物学) 图像(数学) 模式识别(心理学) 数学 几何学 植物 生物
作者
Y. W. Wang,Huimin Yu,Yuming Yan,Shuyi Song,Biyang Liu,Yichong Lu
标识
DOI:10.1145/3581783.3611715
摘要

Cloth-Changing Person Re-Identification (CC-ReID) is a common and realistic problem since fashion constantly changes over time and people's aesthetic preferences are not set in stone. While most existing cloth-changing ReID methods focus on learning cloth-agnostic identity representations from coarse semantic cues (e.g. silhouettes and part segmentation maps), they neglect the continuous shape distributions at the pixel level. In this paper, we propose Continuous Surface Correspondence Learning (CSCL), a new shape embedding paradigm for cloth-changing ReID. CSCL establishes continuous correspondences between a 2D image plane and a canonical 3D body surface via pixel-to-vertex classification, which naturally aligns a person image to the surface of a 3D human model and simultaneously obtains pixel-wise surface embeddings. We further extract fine-grained shape features from the learned surface embeddings and then integrate them with global RGB features via a carefully designed cross-modality fusion module. The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape. To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset that provides densely annotated 2D-3D correspondences and a precise 3D mesh for each person image, while containing diverse cloth-changing cases over all four seasons. Experiments on both cloth-changing and cloth-consistent ReID benchmarks validate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助切克闹采纳,获得10
3秒前
星辰大海应助yyc采纳,获得10
3秒前
自由寻冬完成签到 ,获得积分10
4秒前
平常的毛豆应助丸橙采纳,获得10
4秒前
5秒前
SciGPT应助殷勤的学姐采纳,获得10
6秒前
Tsuzuri完成签到,获得积分10
6秒前
zyxz完成签到,获得积分10
8秒前
ccc完成签到 ,获得积分10
9秒前
10秒前
10秒前
orixero应助你怎么睡得着觉采纳,获得10
12秒前
斯文败类应助潇潇雨歇采纳,获得10
13秒前
飞舞的青鱼完成签到,获得积分10
13秒前
13秒前
正直无极完成签到,获得积分10
13秒前
科研通AI5应助又又采纳,获得10
13秒前
judy完成签到,获得积分10
15秒前
谦让寒云完成签到 ,获得积分10
15秒前
noya仙贝发布了新的文献求助10
16秒前
16秒前
可耐的元容完成签到,获得积分10
16秒前
16秒前
殷勤的学姐完成签到,获得积分10
17秒前
镜中花完成签到 ,获得积分10
17秒前
17秒前
18秒前
zhengzhe发布了新的文献求助20
20秒前
21秒前
21秒前
祎雅发布了新的文献求助10
21秒前
21秒前
moonveil完成签到,获得积分10
22秒前
zhengmiao发布了新的文献求助10
23秒前
wh发布了新的文献求助10
23秒前
Alec发布了新的文献求助10
25秒前
优雅的半梅完成签到 ,获得积分10
27秒前
又又发布了新的文献求助10
27秒前
29秒前
可爱的机器猫完成签到,获得积分20
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785709
求助须知:如何正确求助?哪些是违规求助? 3331153
关于积分的说明 10250327
捐赠科研通 3046583
什么是DOI,文献DOI怎么找? 1672134
邀请新用户注册赠送积分活动 801008
科研通“疑难数据库(出版商)”最低求助积分说明 759979