亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HisDoc R-CNN: Robust Chinese Historical Document Text Line Detection with Dynamic Rotational Proposal Network and Iterative Attention Head

计算机科学 稳健性(进化) 历史文献 人工智能 直线(几何图形) 数据挖掘 模式识别(心理学) 几何学 数学 生物化学 基因 化学
作者
Cheng Jian,Lianwen Jin,Lingyu Liang,Chongyu Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 428-445 被引量:3
标识
DOI:10.1007/978-3-031-41676-7_25
摘要

Text line detection is an essential task in a historical document analysis system. Although many existing text detection methods have achieved remarkable performance on various scene text datasets, they cannot perform well because of the high density, multiple scales, and multiple orientations of text lines in complex historical documents. Thus, it is crucial and challenging to investigate effective text line detection methods for historical documents. In this paper, we propose a Dynamic Rotational Proposal Network (DRPN) and an Iterative Attention Head (IAH), which are incorporated into Mask R-CNN to detect text lines in historical documents. The DRPN can dynamically generate horizontal or rotational proposals to enhance the robustness of the model for multi-oriented text lines and alleviate the multi-scale problem in historical documents. The proposed IAH integrates a multi-dimensional attention mechanism that can better learn the features of dense historical document text lines while improving detection accuracy and reducing the model parameters via an iterative mechanism. Our HisDoc R-CNN achieves state-of-the-art performance on various historical document benchmarks including CHDAC (the IACC competition ( http://iacc.pazhoulab-huangpu.com/shows/108/1.html ) dataset), MTHv2, and ICDAR 2019 HDRC CHINESE, thereby demonstrating the robustness of our method. Furthermore, we present special tricks for historical document scenarios, which may provide useful insights for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
manfullmoon发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
22秒前
niko发布了新的文献求助10
23秒前
niko发布了新的文献求助10
23秒前
niko发布了新的文献求助10
23秒前
niko发布了新的文献求助10
23秒前
niko发布了新的文献求助10
23秒前
niko发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962