Construction of a High Spatiotemporal Resolution Dataset of Satellite-DerivedpCO2and Air–Sea CO2Flux in the South China Sea (2003–2019)

卫星 焊剂(冶金) 遥感 计算机科学 地质学 物理 化学 天文 有机化学
作者
Zigeng Song,Shujie Yu,Yan Bai,Xianghui Guo,Xianqiang He,Weidong Zhai,Minhan Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:7
标识
DOI:10.1109/tgrs.2023.3306389
摘要

The South China Sea (SCS) is one of the largest marginal seas in the world. It includes a river-dominated, highly productive ocean margin on the northern shelf and an oligotrophic ocean-dominated basin along with other sub-regions with various features. It was challenge to estimate the air-sea CO2 flux in this area. We developed a retrieval algorithm for sea surface p CO 2 by a combination of our previously established semi-mechanistic approach (MeSAA) and machine learning (ML) method, named MeSAA-ML-SCS, built upon a large dataset of sea surface partial pressure of CO 2 ( p CO 2 ) collected from in situ measurements during 44 cruises/legs to the SCS in the last two decades. We set several semi-analytical parameters, includes: p CO 2_therm represented the combined effect of thermodynamics and the atmospheric CO 2 forcing on seawater p CO 2 ; upwelling index (UISST) and mixing layer depth (MLD) to characterize the mixing processes; chlorophyll-a concentration (Chl-a) with remote sensing reflectance at 443 and 555 nm (Rrs(443) and Rrs(555)), which were proxies of biological effects and other characteristics for distinguishing shelf, basin, and sub-regions. We set the difference between seawater p CO 2 and atmospheric p CO 2p CO 2 Sea-Air ) as the output, and the seawater p CO 2 was finally obtained by summing atmospheric p CO 2 and Δ p CO 2 Sea-Air . We compared several ML models, and the XGBoost model was confirmed as the best. Independent cruise-based datasets that are not involved in the model training were used to validate the satellite products, with low root mean square error (RMSE = 11.69 μatm) and mean absolute percentage deviation (APD = 1.59%). The increasing trend of time-series satellite-derived p CO 2 (2.44 ± 0.24 μatm/yr) were validated by the in situ data at the Southeastern Asia Time-series Study (SEATS) station, showing good consistency. Results indicate that the SCS as a whole is a source of atmospheric CO 2 , releasing an average of 12.34 ± 3.11 Tg C/yr from a total area of 2.87 × 10 6 km 2 , while the northern shelf act as a sink (2.02 ± 0.64 Tg C/yr). With the forcing of increasing atmospheric CO 2 , the area-integrated CO 2 efflux over the entire SCS is decreasing with a rate of 0.41 Tg C/yr during 2003–2019. This shared long time series, high-accuracy dataset (1 km) can be helpful to further improve our understanding of the air-sea CO 2 exchange dynamics in the SCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjw发布了新的文献求助10
1秒前
打工仔完成签到 ,获得积分10
2秒前
知悉发布了新的文献求助10
3秒前
Jasper应助小何采纳,获得10
5秒前
搜集达人应助大鸡腿采纳,获得10
6秒前
年鱼精发布了新的文献求助10
7秒前
automan完成签到,获得积分10
8秒前
Lucas应助果子采纳,获得10
8秒前
朱向阳完成签到 ,获得积分10
9秒前
shirely完成签到,获得积分10
9秒前
春风明月发布了新的文献求助10
11秒前
shirely发布了新的文献求助10
12秒前
13秒前
Retromer完成签到,获得积分10
14秒前
14秒前
NPC-CBI完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
一颗葡萄完成签到,获得积分10
17秒前
大鸡腿发布了新的文献求助10
18秒前
19秒前
zhaosh发布了新的文献求助10
20秒前
桐桐应助DearJulie采纳,获得10
20秒前
小米发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
乱武完成签到,获得积分10
22秒前
23秒前
tovfix完成签到,获得积分10
24秒前
YJY完成签到,获得积分10
25秒前
路先生发布了新的文献求助10
25秒前
27秒前
hehe发布了新的文献求助10
27秒前
28秒前
之星君完成签到,获得积分10
28秒前
30秒前
一颗葡萄发布了新的文献求助20
30秒前
田様应助123采纳,获得10
31秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232