亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Class imbalance mitigation: A select-then-extract learning framework for emotion-cause pair extraction

计算机科学 人工智能 自然语言处理 背景(考古学) 模棱两可 任务(项目管理) 自动汇总 班级(哲学) 生物 古生物学 经济 管理 程序设计语言
作者
Min Li,Zhao Hui,Tiquan Gu,Di Ying,Bin Liao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121386-121386 被引量:2
标识
DOI:10.1016/j.eswa.2023.121386
摘要

The class imbalance problem arises in the current end-to-end models for the emotion-cause pair extraction (ECPE) task, and a large number of negative clause pairs interfere model to depict the characteristics of emotion and cause. Most existing methods adopt a window-constrained strategy to limit the relative distance between candidate clauses to a smaller range to filter negative pairs. However, those methods ignore the semantic association between distant clauses, and using an artificial window size is imperfect due to the inherent ambiguity and delicacy of emotion. Inspired by the centrality principle of discourse, in this paper we propose a select-then-extract framework for the ECPE task, where the core clauses are first selected from the original document as candidate emotion and cause clauses, and then emotions, causes and emotion-cause pairs are jointly extracted from the candidate clauses. Specifically, our model includes two main components: core clause selector and emotion-cause pairs extractor. For the Core Clause Selector, we introduce the extractive document summarization (EDS) task and present a multi-granularity semantic awareness cooperative graph model (MGCOG) to extract core clauses from documents. Compared to the previous methods, the core clause selector is more effective for alleviating the category imbalance because the global causal cues and context can be captured by learning global keywords and inter-clause relationships, which determines more efficient candidate clauses. For Emotion-Cause Pairs Extractor, we put forward a multi-task learning model to jointly extract emotions, causes and emotion-cause pairs from the selected core clauses. Here, a multi-head attention is used to further model the relationship between candidate clauses, and a co-predictor is designed for assigning scores to all possible emotion-cause pairs. We further investigate the pipeline and the joint model under the select-then-extract framework, and show that the experimental results on benchmark datasets are consistently superior to the comparative baseline models. Extensive ablation experiments also verify the effectiveness of each component.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材料摆渡人完成签到 ,获得积分10
1秒前
Linden_bd完成签到 ,获得积分10
8秒前
万能图书馆应助莞尔wr1采纳,获得10
11秒前
20秒前
24秒前
莞尔wr1完成签到,获得积分10
28秒前
30秒前
轻松寄风发布了新的文献求助20
30秒前
摇摇猪发布了新的文献求助10
37秒前
养一只鱼完成签到 ,获得积分10
38秒前
聪明勇敢有力气完成签到 ,获得积分10
43秒前
ZQP完成签到,获得积分10
47秒前
50秒前
小鱼完成签到 ,获得积分10
53秒前
55秒前
奥黛丽赫本完成签到,获得积分10
58秒前
摇摇猪完成签到,获得积分10
1分钟前
小二郎应助木子采纳,获得10
1分钟前
Ava应助树枝采纳,获得10
1分钟前
仔仔完成签到 ,获得积分10
1分钟前
奋斗的友儿完成签到,获得积分10
1分钟前
朵啦诶萌完成签到,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
dreamly完成签到 ,获得积分10
1分钟前
大个应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
jasondy发布了新的文献求助10
1分钟前
Lucas应助jiang采纳,获得10
1分钟前
morena发布了新的文献求助10
1分钟前
1分钟前
jasondy完成签到,获得积分10
1分钟前
1分钟前
huanger完成签到,获得积分10
2分钟前
郭奕廷完成签到,获得积分10
2分钟前
自由的水杯完成签到,获得积分20
2分钟前
2分钟前
AXLL完成签到 ,获得积分10
2分钟前
郭奕廷发布了新的文献求助10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540463
捐赠科研通 3106002
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264