Class imbalance mitigation: A select-then-extract learning framework for emotion-cause pair extraction

计算机科学 人工智能 自然语言处理 背景(考古学) 模棱两可 任务(项目管理) 自动汇总 班级(哲学) 生物 古生物学 经济 管理 程序设计语言
作者
Min Li,Zhao Hui,Tiquan Gu,Di Ying,Bin Liao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121386-121386 被引量:2
标识
DOI:10.1016/j.eswa.2023.121386
摘要

The class imbalance problem arises in the current end-to-end models for the emotion-cause pair extraction (ECPE) task, and a large number of negative clause pairs interfere model to depict the characteristics of emotion and cause. Most existing methods adopt a window-constrained strategy to limit the relative distance between candidate clauses to a smaller range to filter negative pairs. However, those methods ignore the semantic association between distant clauses, and using an artificial window size is imperfect due to the inherent ambiguity and delicacy of emotion. Inspired by the centrality principle of discourse, in this paper we propose a select-then-extract framework for the ECPE task, where the core clauses are first selected from the original document as candidate emotion and cause clauses, and then emotions, causes and emotion-cause pairs are jointly extracted from the candidate clauses. Specifically, our model includes two main components: core clause selector and emotion-cause pairs extractor. For the Core Clause Selector, we introduce the extractive document summarization (EDS) task and present a multi-granularity semantic awareness cooperative graph model (MGCOG) to extract core clauses from documents. Compared to the previous methods, the core clause selector is more effective for alleviating the category imbalance because the global causal cues and context can be captured by learning global keywords and inter-clause relationships, which determines more efficient candidate clauses. For Emotion-Cause Pairs Extractor, we put forward a multi-task learning model to jointly extract emotions, causes and emotion-cause pairs from the selected core clauses. Here, a multi-head attention is used to further model the relationship between candidate clauses, and a co-predictor is designed for assigning scores to all possible emotion-cause pairs. We further investigate the pipeline and the joint model under the select-then-extract framework, and show that the experimental results on benchmark datasets are consistently superior to the comparative baseline models. Extensive ablation experiments also verify the effectiveness of each component.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZ应助甜美的秋尽采纳,获得10
2秒前
DTkunkun完成签到,获得积分10
4秒前
Ava应助李俩甜蜜蜜采纳,获得10
4秒前
小轩完成签到,获得积分10
4秒前
庾傀斗发布了新的文献求助10
5秒前
DTkunkun发布了新的文献求助10
7秒前
汤成莉完成签到 ,获得积分10
7秒前
战场螃蟹完成签到,获得积分10
8秒前
东耦应助iwww采纳,获得10
10秒前
梁帅琦完成签到,获得积分20
12秒前
突突兔完成签到 ,获得积分10
12秒前
13秒前
14秒前
lzd完成签到,获得积分10
15秒前
CodeCraft应助graham1101采纳,获得10
15秒前
ZX0501完成签到,获得积分10
16秒前
hi发布了新的文献求助10
17秒前
苒苒完成签到,获得积分10
19秒前
yimi发布了新的文献求助10
19秒前
apple_chan发布了新的文献求助10
20秒前
solarlad完成签到,获得积分10
20秒前
20秒前
21秒前
Mirandavia发布了新的文献求助20
24秒前
思源应助美丽的雪珍采纳,获得10
25秒前
26秒前
26秒前
charry发布了新的文献求助10
28秒前
30秒前
丘比特应助Ronee采纳,获得10
30秒前
30秒前
33秒前
nick完成签到,获得积分10
34秒前
闪闪的白易完成签到,获得积分10
34秒前
gu123完成签到,获得积分10
34秒前
Orange应助猪猪hero采纳,获得10
35秒前
CipherSage应助sunyanghu369采纳,获得10
35秒前
不会失忆完成签到,获得积分10
35秒前
36秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056219
求助须知:如何正确求助?哪些是违规求助? 3594312
关于积分的说明 11419936
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971