Inverse identification of cohesive zone parameters for sintered nano-silver joints based on dynamic convolution neural network

卷积神经网络 流离失所(心理学) 卷积(计算机科学) 多层感知器 内聚力模型 人工神经网络 反问题 双线性插值 计算机科学 计算 感知器 鉴定(生物学) 算法 材料科学 人工智能 结构工程 断裂力学 数学 工程类 数学分析 计算机视觉 心理学 心理治疗师 植物 生物
作者
Jiahui Wei,Yanwei Dai,Fei Qin
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:292: 109651-109651 被引量:4
标识
DOI:10.1016/j.engfracmech.2023.109651
摘要

The inverse identification of cohesive zone parameters is an important topic in the field of fracture mechanics. In this paper, three data-driven models, including multilayer perceptron (MLP), convolutional neural network (CNN), and dynamic convolutional neural network (DCNN), were presented to predict the cohesive zone parameters of sintered nano-silver end notched flexure (ENF) joints. Based on the construction of experimental and numerical datasets of load versus displacement curves, bilinear cohesive zone model (CZM) parameters of sintered silver joints are adopted as the prediction target. The investigation shows that MLP, CNN, and DCNN are all valid for predicting CZM parameters through load versus displacement curves with reasonable accuracy. However, DCNN has better prediction accuracy and performance than those of CNN and MLP models based on loss analysis, statistical indicator comparison, and K-fold cross-validation. DCNN can be adopted as the suitable surrogate model for CZM parameters inverse identification with high prediction accuracy. Otherwise, DCNN is also not sensitive to the load versus displacement curves data length. However, the computation efficiency of DCNN during the training process is not as high as that of MLP. Those three methods presented in this paper are very hopeful to be adopted for other inverse identifications of CZM parameters for various kinds of adhesive joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚持三年发布了新的文献求助30
1秒前
ssw发布了新的文献求助10
1秒前
莫之白发布了新的文献求助10
2秒前
doctorbba发布了新的文献求助10
2秒前
2秒前
DAKE发布了新的文献求助10
2秒前
Xppcjlan发布了新的文献求助10
3秒前
Vivian发布了新的文献求助10
3秒前
5秒前
科研通AI5应助yyy采纳,获得10
5秒前
6秒前
9秒前
拼搏小丸子完成签到 ,获得积分10
9秒前
11秒前
小熊同学发布了新的文献求助10
11秒前
12秒前
12秒前
ustinian完成签到,获得积分10
13秒前
Lucas应助Math4396采纳,获得10
13秒前
13秒前
Miyazonox完成签到,获得积分20
13秒前
wanci应助倾听昆语采纳,获得10
14秒前
66发布了新的文献求助10
15秒前
16秒前
orixero应助DAKE采纳,获得10
18秒前
18秒前
基尔霍夫发布了新的文献求助10
18秒前
19秒前
20秒前
小熊同学完成签到,获得积分10
21秒前
yyy发布了新的文献求助10
22秒前
明h完成签到,获得积分10
22秒前
23秒前
23秒前
jmchen发布了新的文献求助10
23秒前
Math4396发布了新的文献求助10
23秒前
狂野的天薇完成签到,获得积分10
24秒前
24秒前
Quenchingstar完成签到,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150