A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics

化学计量学 主成分分析 线性判别分析 偏最小二乘回归 植物油 傅里叶变换红外光谱 化学 光谱学 模式识别(心理学) 近红外光谱 分析化学(期刊) 红外光谱学 荧光光谱法 数学 人工智能 生物系统 食品科学 色谱法 荧光 计算机科学 统计 生物 有机化学 物理 量子力学 神经科学
作者
Libo Yuan,Xiangru Meng,Kehui Xin,Ying Ju,Yan Zhang,Chunling Yin,Leqian Hu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:288: 122120-122120 被引量:12
标识
DOI:10.1016/j.saa.2022.122120
摘要

Driven by economic benefits like any other foods, vegetable oil has long been plagued by mislabeling and adulteration. Many studies have addressed the field of classification and identification of vegetable oils by various analysis techniques, especially spectral analysis. A comparative study was performed using Fourier transform infrared spectroscopy (FTIR), visible near-infrared spectroscopy (Vis-NIR) and excitation-emission matrix fluorescence spectroscopy (EEMs) combined with chemometrics to distinguish different types of edible vegetable oils. FTIR, Vis-NIR and EEMs datasets of 147 samples of five vegetable oils from different brands were analyzed. Two types of pattern recognition methods, principal component analysis (PCA)/multi-way principal component analysis (M-PCA) and partial least squares discriminant analysis (PLS-DA)/multilinear partial least squares discriminant analysis (N-PLS-DA), were used to resolve these data and distinguish vegetable oil types, respectively. PCA/M-PCA analysis exhibited that three spectral data of five vegetable oils showed a clustering trend. The total correct recognition rate of the training set and prediction set of FTIR spectra of vegetable oil based on PLS-DA method are 100%. The total recognition rate of Vis-NIR based on PLS-DA are 100% and 97.96%. However, the total correct recognition rate of training set and prediction set of EEMs data based on N-PLS-DA method is 69.39% and 75.51%, respectively. The comparative study showed that FTIR and Vis-NIR combined with chemometrics were more suitable for vegetable oil species identification than EEMs technique. The reason may be concluded that almost all chemical components in vegetable oil can produce FTIR and NIR absorption, while only a small amount of fluorophores can produce fluorescence. That is, FTIR and NIR can provide more spectral information than EEMs. Analysis of EEMs data using self-weighted alternating trilinear decomposition (SWATLD) also showed that fluorophores were a few and irregularly distributed in vegetable oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小白不会下载完成签到 ,获得积分10
1秒前
奋斗蜗牛发布了新的文献求助10
1秒前
崔志海完成签到,获得积分10
2秒前
Owen应助cc采纳,获得10
3秒前
自来也发布了新的文献求助10
5秒前
5秒前
懒羊羊完成签到,获得积分10
5秒前
LLLKJ发布了新的文献求助10
6秒前
Lyuhng+1完成签到 ,获得积分10
8秒前
xwhhxxb完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
orixero应助I Think采纳,获得10
12秒前
13秒前
14秒前
323431完成签到,获得积分10
14秒前
hehe发布了新的文献求助10
14秒前
Jasper应助酷酷的依波采纳,获得10
14秒前
lei发布了新的文献求助10
17秒前
19秒前
Akim应助自来也采纳,获得10
21秒前
Chris学长完成签到,获得积分10
22秒前
25秒前
墨客完成签到,获得积分20
26秒前
材料若饥完成签到,获得积分10
28秒前
浅帅发布了新的文献求助10
29秒前
橘颂完成签到,获得积分10
30秒前
科研通AI5应助阿橘采纳,获得10
30秒前
30秒前
开心仙人掌完成签到,获得积分10
30秒前
32秒前
又村完成签到 ,获得积分10
32秒前
兜兜揣满糖完成签到 ,获得积分10
33秒前
35秒前
I Think发布了新的文献求助10
37秒前
善学以致用应助Sten采纳,获得10
37秒前
37秒前
科研通AI6应助lei采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761142
求助须知:如何正确求助?哪些是违规求助? 4101509
关于积分的说明 12691240
捐赠科研通 3817259
什么是DOI,文献DOI怎么找? 2107125
邀请新用户注册赠送积分活动 1131772
关于科研通互助平台的介绍 1010672