Realizing a deep reinforcement learning agent discovering real-time feedback control strategies for a quantum system

强化学习 计算机科学 延迟(音频) 人工智能 电信
作者
Kevin Reuer,Jonas Landgraf,Thomas Fösel,James O’Sullivan,Liberto Beltrán,Abdulkadir Akın,Graham J. Norris,Ants Remm,Michael Kerschbaum,Jean-Claude Besse,Florian Marquardt,Andreas Wallraff,Christopher Eichler
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2210.16715
摘要

To realize the full potential of quantum technologies, finding good strategies to control quantum information processing devices in real time becomes increasingly important. Usually these strategies require a precise understanding of the device itself, which is generally not available. Model-free reinforcement learning circumvents this need by discovering control strategies from scratch without relying on an accurate description of the quantum system. Furthermore, important tasks like state preparation, gate teleportation and error correction need feedback at time scales much shorter than the coherence time, which for superconducting circuits is in the microsecond range. Developing and training a deep reinforcement learning agent able to operate in this real-time feedback regime has been an open challenge. Here, we have implemented such an agent in the form of a latency-optimized deep neural network on a field-programmable gate array (FPGA). We demonstrate its use to efficiently initialize a superconducting qubit into a target state. To train the agent, we use model-free reinforcement learning that is based solely on measurement data. We study the agent's performance for strong and weak measurements, and for three-level readout, and compare with simple strategies based on thresholding. This demonstration motivates further research towards adoption of reinforcement learning for real-time feedback control of quantum devices and more generally any physical system requiring learnable low-latency feedback control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Han完成签到,获得积分10
1秒前
善学以致用应助吴可之采纳,获得10
11秒前
11秒前
科研通AI2S应助小龅牙吖采纳,获得10
13秒前
14秒前
小王不举铁发布了新的文献求助200
15秒前
16秒前
内向绿竹完成签到,获得积分10
16秒前
bird发布了新的文献求助10
17秒前
魔幻雪巧完成签到,获得积分10
19秒前
小吴完成签到,获得积分10
19秒前
科研通AI2S应助冷傲迎梦采纳,获得10
20秒前
21秒前
多肽专家完成签到,获得积分10
23秒前
23秒前
SciGPT应助吾日三省吾身采纳,获得10
24秒前
25秒前
25秒前
黎小静发布了新的文献求助10
26秒前
26秒前
26秒前
anitachiu1104发布了新的文献求助10
28秒前
彭于晏应助Ying采纳,获得10
29秒前
乐优完成签到 ,获得积分10
30秒前
kmzzy发布了新的文献求助10
30秒前
31秒前
坚定念云发布了新的文献求助30
32秒前
33秒前
34秒前
36秒前
37秒前
38秒前
7777完成签到,获得积分20
40秒前
云中歌完成签到,获得积分10
40秒前
carl发布了新的文献求助10
41秒前
秋半梦完成签到,获得积分10
42秒前
李爱国应助现代安筠采纳,获得10
43秒前
44秒前
cc完成签到 ,获得积分10
45秒前
吾日三省吾身完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385