亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Validated machine learning tools to distinguish immune checkpoint inhibitor, radiotherapy, COVID-19 and other infective pneumonitis

医学 肺炎 2019年冠状病毒病(COVID-19) 放射治疗 放射性武器 放射科 不利影响 内科学 疾病 传染病(医学专业)
作者
Sumeet Hindocha,Benjamin Hunter,Kristofer Linton‐Reid,Thomas Charlton,Mitchell Chen,Andrew Logan,Merina Ahmed,Imogen Locke,Bhupinder Sharma,Simon Doran,Matthew Orton,Catey Bunce,Danielle Power,Shahreen Ahmad,Karen K. L. Chan,Peng Yun Ng,Richard Toshner,Binnaz Yasar,John Conibear,Ravindhi Murphy
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:195: 110266-110266 被引量:7
标识
DOI:10.1016/j.radonc.2024.110266
摘要

BackgroundPneumonitis is a well-described, potentially disabling, or fatal adverse effect associated with both immune checkpoint inhibitors (ICI) and thoracic radiotherapy. Accurate differentiation between checkpoint inhibitor pneumonitis (CIP) radiation pneumonitis (RP), and infective pneumonitis (IP) is crucial for swift, appropriate, and tailored management to achieve optimal patient outcomes. However, correct diagnosis is often challenging, owing to overlapping clinical presentations and radiological patterns.MethodsIn this multi-centre study of 455 patients, we used machine learning with radiomic features extracted from chest CT imaging to develop and validate five models to distinguish CIP and RP from COVID-19, non-COVID-19 infective pneumonitis, and each other. Model performance was compared to that of two radiologists.ResultsModels to distinguish RP from COVID-19, CIP from COVID-19 and CIP from non-COVID-19 IP out-performed radiologists (test set AUCs of 0.92 vs 0.8 and 0.8; 0.68 vs 0.43 and 0.4; 0.71 vs 0.55 and 0.63 respectively). Models to distinguish RP from non-COVID-19 IP and CIP from RP were not superior to radiologists but demonstrated modest performance, with test set AUCs of 0.81 and 0.8 respectively. The CIP vs RP model performed less well on patients with prior exposure to both ICI and radiotherapy (AUC 0.54), though the radiologists also had difficulty distinguishing this test cohort (AUC values 0.6 and 0.6).ConclusionOur results demonstrate the potential utility of such tools as a second or concurrent reader to support oncologists, radiologists, and chest physicians in cases of diagnostic uncertainty. Further research is required for patients with exposure to both ICI and thoracic radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AZN完成签到,获得积分10
3秒前
科目三应助健康的修洁采纳,获得10
7秒前
7秒前
Hope发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
AZN发布了新的文献求助30
10秒前
土豪的洋葱完成签到,获得积分10
13秒前
jnoker完成签到 ,获得积分10
14秒前
龙叶静完成签到 ,获得积分10
17秒前
18秒前
21秒前
23秒前
星启发布了新的文献求助10
26秒前
xunanlei发布了新的文献求助10
27秒前
传奇3应助愚人采纳,获得10
30秒前
丘比特应助Arjun采纳,获得10
34秒前
35秒前
加缪举报hx求助涉嫌违规
36秒前
栗子呢呢呢完成签到 ,获得积分10
37秒前
故槿完成签到 ,获得积分10
44秒前
44秒前
44秒前
lixiaolu完成签到 ,获得积分10
46秒前
碧蓝满天完成签到 ,获得积分10
47秒前
Jupiter 1234发布了新的文献求助10
47秒前
Arjun发布了新的文献求助10
50秒前
52秒前
Arjun完成签到,获得积分10
54秒前
我是老大应助吴雨茜采纳,获得10
56秒前
小悦子发布了新的文献求助10
57秒前
周老八发布了新的文献求助10
58秒前
mmyhn发布了新的文献求助10
1分钟前
PengDai完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助木叶流2022采纳,获得10
1分钟前
PengDai发布了新的文献求助10
1分钟前
薛定谔的猫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助Jupiter 1234采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900060
求助须知:如何正确求助?哪些是违规求助? 4180209
关于积分的说明 12976457
捐赠科研通 3944577
什么是DOI,文献DOI怎么找? 2163784
邀请新用户注册赠送积分活动 1182036
关于科研通互助平台的介绍 1087938