GACEMV: An ensemble learning framework for constructing COVID-19 diagnosis and prognosis models

2019年冠状病毒病(COVID-19) 计算机科学 集成学习 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 人工智能 机器学习 病毒学 医学 传染病(医学专业) 疾病 病理 爆发
作者
Lei Sun,Yueyang Liu,Linjie Han,Yibin Chang,Minghui Du,Yongshan Zhao,J Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106305-106305
标识
DOI:10.1016/j.bspc.2024.106305
摘要

The accurate prediction of the severity and prognosis of COVID-19 patients is essential in order to select the ideal treatment plan, which can help reduce mortality rates associated with the virus. Artificial intelligence (AI)-based disease prediction models show potential in diagnosing and prognosis COVID-19 patients. However, their black-box nature, overfitting, and low accuracy limit their application. To address these challenges, this study proposes a GACEMV ensemble learning framework for building practical and high-precision COVID-19 patient diagnosis models. The GACEMV utilizes genetic algorithm to optimize the hyperparameters of base learners in order to enhance their predictive ability. Additionally, a comprehensive evaluation method is adopted to select the optimal combination of base learners, reducing performance differences and avoiding interference from noisy models. The Ensemble learning model constructed by GACEMV achieved good accuracy in predicting the severity and prognosis of COVID-19 patients through external data sets. Further ablation experiments confirm the necessity of genetic algorithm and comprehensive evaluation method for GACEMV. Moreover, the Ensemble learning model shows outstanding performance in identifying suspected COVID-19 patients in a specific data set, validating its identification ability. Furthermore, the SHAP method identifies a set of biomarkers associated with the severity and prognosis of COVID-19 patients, which are consistent with previous reports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ps发布了新的文献求助10
1秒前
log完成签到,获得积分10
3秒前
4秒前
zz完成签到,获得积分10
6秒前
6秒前
司空剑封完成签到,获得积分10
7秒前
开心的大娘给开心的大娘的求助进行了留言
8秒前
kingwill发布了新的文献求助30
9秒前
头发多多完成签到,获得积分10
10秒前
枔怡发布了新的文献求助30
10秒前
10秒前
10秒前
语上发布了新的文献求助30
11秒前
frozen完成签到,获得积分10
12秒前
大白菜发布了新的文献求助10
12秒前
coolkid应助罗亚亚采纳,获得10
14秒前
ps完成签到,获得积分10
15秒前
16秒前
拾荒者完成签到,获得积分10
21秒前
嗯呢完成签到,获得积分10
21秒前
乐宝完成签到,获得积分10
22秒前
24秒前
花开完成签到,获得积分10
26秒前
26秒前
27秒前
陌上尘发布了新的文献求助10
28秒前
缥缈的松鼠完成签到 ,获得积分10
28秒前
Lionking完成签到,获得积分10
30秒前
花开发布了新的文献求助10
32秒前
joker完成签到,获得积分10
32秒前
呆呆发布了新的文献求助10
32秒前
33秒前
大模型应助沉静的龙猫采纳,获得10
33秒前
angelsknight发布了新的文献求助30
33秒前
33秒前
1啊哈哈哈3完成签到,获得积分10
34秒前
二小完成签到 ,获得积分10
34秒前
陌上尘完成签到,获得积分10
35秒前
科研通AI5应助枔怡采纳,获得30
36秒前
美丽的凌蝶完成签到,获得积分10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947