Students’ active cognitive engagement with instructional videos predicts STEM learning

认知 心理学 数学教育 学生参与度 认知负荷 计算机科学 神经科学
作者
Shelbi Kuhlmann,Robert D. Plumley,Zoe Evans,Matthew L. Bernacki,Jeffrey A. Greene,Kelly A. Hogan,Michael Berro,Kathleen M. Gates,A. T. Panter
出处
期刊:Computers & education [Elsevier]
卷期号:216: 105050-105050 被引量:1
标识
DOI:10.1016/j.compedu.2024.105050
摘要

The efficacy of well-designed instructional videos for STEM learning is largely reliant on how actively students cognitively engage with them. Students' ability to actively engage with videos likely depends upon individual characteristics like their prior knowledge. In this study, we investigated how digital trace data could be used as indicators of students' cognitive engagement with instructional videos, how such engagement predicted learning, and how prior knowledge moderated that relationship. One hundred twenty-eight biology undergraduate students learned with a series of instructional videos and took a biology unit exam one week later. We conducted sequence mining on the digital events of students' video-watching behaviors to capture the most commonly occurring sequences. Twenty-six sequences emerged and were aggregated into four groups indicative of cognitive engagement: repeated scrubbing, speed watching, extended scrubbing, and rewinding. Results indicated more active engagement via speed watching and rewinding behaviors positively predicted unit exam scores, but only for students with lower prior knowledge. These findings suggest that the ways students cognitively engage with videos predict how they will learn from them, that these relations are dependent upon their prior knowledge, and that researchers can measure students' cognitive engagement with instructional videos via mining digital log data. This research emphasizes the importance of active cognitive engagement with video interface tools and the need for students to accurately calibrate their learning behaviors in relation to their prior knowledge when learning from videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
yyy完成签到,获得积分10
2秒前
彩色不斜完成签到 ,获得积分10
3秒前
爆米花应助风语村采纳,获得10
3秒前
大方元风发布了新的文献求助10
3秒前
3秒前
Gcia完成签到 ,获得积分10
4秒前
琳666发布了新的文献求助10
5秒前
仵一发布了新的文献求助10
6秒前
清爽语柳发布了新的文献求助30
6秒前
小怪兽发布了新的文献求助10
7秒前
脑洞疼应助孝顺的航空采纳,获得10
8秒前
kzf丶bryant发布了新的文献求助10
9秒前
风语村发布了新的文献求助10
13秒前
CVI完成签到,获得积分10
13秒前
健壮涵柳发布了新的文献求助10
14秒前
14秒前
Jiakopa发布了新的文献求助10
15秒前
馨妈完成签到 ,获得积分10
15秒前
nonono完成签到,获得积分10
15秒前
chenchen完成签到 ,获得积分10
16秒前
Propitious完成签到 ,获得积分10
16秒前
18秒前
changping应助坚定的小海豚采纳,获得10
21秒前
哈迪发布了新的文献求助10
21秒前
小杭76应助yang采纳,获得10
22秒前
陈平安完成签到,获得积分10
22秒前
自觉嫣然发布了新的文献求助10
23秒前
爆米花应助离言采纳,获得10
24秒前
丘比特应助y一一采纳,获得10
24秒前
24秒前
MchemG应助kento采纳,获得50
24秒前
终抵星空完成签到,获得积分10
25秒前
宋博文完成签到,获得积分10
27秒前
12123浪发布了新的文献求助10
28秒前
28秒前
chenjiaye完成签到,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312