Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network

图形 计算机科学 药物重新定位 特征学习 理论计算机科学 药品 人工智能 医学 精神科
作者
Xinliang Sun,Bei Wang,Jie Zhang,Min Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5757-5765 被引量:13
标识
DOI:10.1109/jbhi.2022.3194891
摘要

Drug repositioning identifies novel therapeutic potentials for existing drugs and is considered an attractive approach due to the opportunity for reduced development timelines and overall costs. Prior computational methods usually learned a drug's representation from an entire graph of drug-disease associations. Therefore, the representation of learned drugs representation are static and agnostic to various diseases. However, for different diseases, a drug's mechanism of actions (MoAs) are different. The relevant context information should be differentiated for the same drug to target different diseases. Computational methods are thus required to learn different representations corresponding to different drug-disease associations for the given drug. In view of this, we propose an end-to-end partner-specific drug repositioning approach based on graph convolutional network, named PSGCN. PSGCN firstly extracts specific context information around drug-disease pairs from an entire graph of drug-disease associations. Then, it implements a graph convolutional network on the extracted graph to learn partner-specific graph representation. As the different layers of graph convolutional network contribute differently to the representation of the partner-specific graph, we design a layer self-attention mechanism to capture multi-scale layer information. Finally, PSGCN utilizes sortpool strategy to obtain the partner-specific graph embedding and formulates a drug-disease association prediction as a graph classification task. A fully-connected module is established to classify the partner-specific graph representations. The experiments on three benchmark datasets prove that the representation learning of partner-specific graph can lead to superior performances over state-of-the-art methods. In particular, case studies on small cell lung cancer and breast carcinoma confirmed that PSGCN is able to retrieve more actual drug-disease associations in the top prediction results. Moreover, in comparison with other static approaches, PSGCN can partly distinguish the different disease context information for the given drug.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxy发布了新的文献求助10
刚刚
星辰大海应助Anderson123采纳,获得10
刚刚
酷波er应助Anderson123采纳,获得10
刚刚
英俊的铭应助Anderson123采纳,获得10
刚刚
小蘑菇应助Anderson123采纳,获得10
刚刚
共享精神应助Anderson123采纳,获得10
刚刚
冰魂应助花影采纳,获得10
1秒前
neiz发布了新的文献求助10
2秒前
苏乘风发布了新的文献求助10
2秒前
HelloWORLD发布了新的文献求助10
3秒前
4秒前
温暖芸发布了新的文献求助10
4秒前
大个应助安详的语蕊采纳,获得10
5秒前
Bella完成签到,获得积分10
5秒前
科研通AI5应助迷路安雁采纳,获得10
5秒前
5秒前
活泼的诗桃完成签到,获得积分10
6秒前
充电宝应助zxh采纳,获得10
7秒前
LLL完成签到,获得积分10
7秒前
宋晓静完成签到,获得积分10
7秒前
彭于晏应助瘦瘦的枫叶采纳,获得10
7秒前
搜集达人应助kobesakura采纳,获得10
7秒前
科研通AI5应助呦呦又鹿采纳,获得10
7秒前
王铭卓完成签到,获得积分10
7秒前
8秒前
9秒前
英姑应助轻松姒采纳,获得10
9秒前
七天与发布了新的文献求助10
9秒前
星辰大海应助polysaccharide采纳,获得10
10秒前
清风发布了新的文献求助30
11秒前
11秒前
Shirley完成签到 ,获得积分10
11秒前
陈俊雷完成签到 ,获得积分10
11秒前
12秒前
瘦瘦的电线杆完成签到,获得积分10
12秒前
彩色的小懒虫完成签到,获得积分10
12秒前
13秒前
13秒前
读博小菜菜完成签到,获得积分10
13秒前
下课了吧发布了新的文献求助10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809611
求助须知:如何正确求助?哪些是违规求助? 3354164
关于积分的说明 10368918
捐赠科研通 3070418
什么是DOI,文献DOI怎么找? 1686244
邀请新用户注册赠送积分活动 810863
科研通“疑难数据库(出版商)”最低求助积分说明 766396