清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combating Fake News on Social Media: An Early Detection Approach Using Multimodal Adversarial Transfer Learning

对抗制 社会化媒体 学习迁移 计算机科学 假新闻 人工智能 传输(计算) 机器学习 数据科学 互联网隐私 万维网 并行计算
作者
Cong Wang,Chuchun Zhang,Runyu Chen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0514
摘要

The proliferation and rapid spread of fake news on social media pose a significant threat to society, underscoring the urgent need for effective early detection methods. This paper introduces multimodal adversarial transfer learning (MATRAL), a novel approach designed for early fake news detection. MATRAL integrates multimodal learning with adversarial transfer learning. Through effective multimodal learning, MATRAL can form a comprehensive representation of news items on social media, including text, images, and publisher information. The adversarial transfer learning component enables MATRAL to dynamically adapt its knowledge to new domains, ensuring the approach’s ongoing relevance against the evolving fake news generation tactics. Using the MediaEval 15–16 data sets to simulate the early fake news detection scenario, we conduct extensive experiments to evaluate MATRAL’s performance against state-of-the-art methods in multimodal fake news detection, machine learning methods, and industrial practices. The experimental results conclusively demonstrate MATRAL’s superiority across various widely adopted metrics, showcasing its proficiency in early stage fake news detection. To further elucidate the contributions of various model components, a series of ablation studies are conducted. Furthermore, MATRAL’s interpretability and robustness are substantiated through additional experimental analyses. Our work introduces a novel and robust solution to the pressing challenge of multimodal fake news detection on social media, offering a significant contribution to the research and practice of responsible artificial intelligence. History: This paper has been accepted by Kaushik Dutta for the Special Issue on the Responsible AI and Data Science for Social Good. Funding: This research was partially supported by the National Natural Science Foundation of China [Grants 72495123, 72101007, and 72201061]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0514 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0514 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潜行者完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
29秒前
bingo完成签到,获得积分10
1分钟前
重庆森林完成签到,获得积分10
1分钟前
Ada完成签到 ,获得积分10
1分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
CodeCraft应助水雾采纳,获得10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
平常以云完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
2分钟前
水雾发布了新的文献求助10
2分钟前
tt完成签到,获得积分10
3分钟前
Fairy完成签到,获得积分10
3分钟前
鹏程万里完成签到,获得积分10
4分钟前
暗号完成签到 ,获得积分0
4分钟前
LJJ完成签到,获得积分10
4分钟前
慕青应助研友_8RyzBZ采纳,获得10
5分钟前
ljl86400完成签到,获得积分10
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
科研通AI6应助阳光的星月采纳,获得10
6分钟前
大个应助研友_8RyzBZ采纳,获得10
6分钟前
7分钟前
研友_8RyzBZ发布了新的文献求助10
7分钟前
123应助研友_8RyzBZ采纳,获得10
7分钟前
赘婿应助阳光的星月采纳,获得10
7分钟前
外向的妍完成签到,获得积分10
7分钟前
8分钟前
娟子完成签到,获得积分10
8分钟前
8分钟前
lsl应助Atopos采纳,获得30
9分钟前
Criminology34应助Atopos采纳,获得10
9分钟前
10分钟前
10分钟前
11分钟前
嘟嘟完成签到 ,获得积分10
11分钟前
Aray完成签到 ,获得积分10
11分钟前
taster完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311