Combating Fake News on Social Media: An Early Detection Approach Using Multimodal Adversarial Transfer Learning

对抗制 社会化媒体 学习迁移 计算机科学 假新闻 人工智能 传输(计算) 机器学习 数据科学 互联网隐私 万维网 并行计算
作者
Cong Wang,Chuchun Zhang,Runyu Chen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0514
摘要

The proliferation and rapid spread of fake news on social media pose a significant threat to society, underscoring the urgent need for effective early detection methods. This paper introduces multimodal adversarial transfer learning (MATRAL), a novel approach designed for early fake news detection. MATRAL integrates multimodal learning with adversarial transfer learning. Through effective multimodal learning, MATRAL can form a comprehensive representation of news items on social media, including text, images, and publisher information. The adversarial transfer learning component enables MATRAL to dynamically adapt its knowledge to new domains, ensuring the approach’s ongoing relevance against the evolving fake news generation tactics. Using the MediaEval 15–16 data sets to simulate the early fake news detection scenario, we conduct extensive experiments to evaluate MATRAL’s performance against state-of-the-art methods in multimodal fake news detection, machine learning methods, and industrial practices. The experimental results conclusively demonstrate MATRAL’s superiority across various widely adopted metrics, showcasing its proficiency in early stage fake news detection. To further elucidate the contributions of various model components, a series of ablation studies are conducted. Furthermore, MATRAL’s interpretability and robustness are substantiated through additional experimental analyses. Our work introduces a novel and robust solution to the pressing challenge of multimodal fake news detection on social media, offering a significant contribution to the research and practice of responsible artificial intelligence. History: This paper has been accepted by Kaushik Dutta for the Special Issue on the Responsible AI and Data Science for Social Good. Funding: This research was partially supported by the National Natural Science Foundation of China [Grants 72495123, 72101007, and 72201061]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0514 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0514 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LaKI完成签到,获得积分10
1秒前
wenLi发布了新的文献求助10
1秒前
2秒前
hcmsaobang2001完成签到,获得积分10
2秒前
yejian完成签到,获得积分10
3秒前
桐桐应助超帅代珊采纳,获得10
3秒前
小二郎应助111111111采纳,获得10
3秒前
肖123完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
加减法完成签到,获得积分10
6秒前
顾子墨完成签到,获得积分10
6秒前
7秒前
8秒前
半凡完成签到,获得积分10
8秒前
丘比特应助ChaiN采纳,获得10
9秒前
ZEB完成签到,获得积分10
9秒前
舒适香露发布了新的文献求助10
9秒前
9秒前
9秒前
WhiteT发布了新的文献求助10
9秒前
Jeremy完成签到 ,获得积分10
9秒前
Meyako应助肖123采纳,获得10
10秒前
Meyako应助肖123采纳,获得10
10秒前
欧维完成签到,获得积分10
10秒前
shangxinyu发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
邹逢源完成签到,获得积分10
12秒前
12秒前
ttf完成签到,获得积分10
12秒前
预计发布了新的文献求助10
12秒前
13秒前
多情大炮发布了新的文献求助10
13秒前
科研通AI6应助哈哈采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384568
求助须知:如何正确求助?哪些是违规求助? 3877805
关于积分的说明 12079791
捐赠科研通 3521208
什么是DOI,文献DOI怎么找? 1932416
邀请新用户注册赠送积分活动 973680
科研通“疑难数据库(出版商)”最低求助积分说明 871863