亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Source-Free Object Detection with Detection Transformer

计算机科学 目标检测 人工智能 计算机视觉 模式识别(心理学)
作者
Huizai Yao,Sicheng Zhao,S. Lu,Hui Chen,Yangyang Li,Guoping Liu,Tengfei Xing,Chenggang Yan,Jianhua Tao,Guiguang Ding
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1-1
标识
DOI:10.1109/tip.2025.3607621
摘要

Source-Free Object Detection (SFOD) enables knowledge transfer from a source domain to an unsupervised target domain for object detection without access to source data. Most existing SFOD approaches are either confined to conventional object detection (OD) models like Faster R-CNN or designed as general solutions without tailored adaptations for novel OD architectures, especially Detection Transformer (DETR). In this paper, we introduce Feature Reweighting ANd Contrastive Learning NetworK (FRANCK), a novel SFOD framework specifically designed to perform query-centric feature enhancement for DETRs. FRANCK comprises four key components: 1) an Objectness Score-based Sample Reweighting (OSSR) module that computes attention-based objectness scores on multi-scale encoder feature maps, reweighting the detection loss to emphasize less-recognized regions; 2) a Contrastive Learning with Matching-based Memory Bank (CMMB) module that integrates multi-level features into memory banks, enhancing class-wise contrastive learning; 3) an Uncertainty-weighted Query-fused Feature Distillation (UQFD) module that improves feature distillation through prediction quality reweighting and query feature fusion; and 4) an improved self-training pipeline with a Dynamic Teacher Updating Interval (DTUI) that optimizes pseudo-label quality. By leveraging these components, FRANCK effectively adapts a source-pre-trained DETR model to a target domain with enhanced robustness and generalization. Extensive experiments on several widely used benchmarks demonstrate that our method achieves state-of-the-art performance, highlighting its effectiveness and compatibility with DETR-based SFOD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
22秒前
Joceelyn完成签到 ,获得积分10
26秒前
renshiwufei完成签到,获得积分10
28秒前
39秒前
41秒前
飘逸的雁露完成签到,获得积分10
45秒前
49秒前
Suraim完成签到,获得积分10
54秒前
54秒前
orixero应助zhnn采纳,获得20
56秒前
lulu发布了新的文献求助10
1分钟前
jader完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助烛夜黎采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
烛夜黎发布了新的文献求助10
1分钟前
所所应助烛夜黎采纳,获得10
1分钟前
风趣的天问完成签到 ,获得积分10
1分钟前
领导范儿应助hhee采纳,获得10
1分钟前
1分钟前
阿乌大王完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
hhee发布了新的文献求助10
2分钟前
在南方看北方完成签到,获得积分10
2分钟前
烟花应助lulu采纳,获得10
2分钟前
2分钟前
欣欣子完成签到,获得积分10
2分钟前
看不了一点文献应助lijiuyi采纳,获得10
2分钟前
sunstar完成签到,获得积分10
2分钟前
悲凉的忆南完成签到,获得积分10
2分钟前
yxl完成签到,获得积分10
2分钟前
lulu发布了新的文献求助10
2分钟前
钟哈哈完成签到,获得积分10
2分钟前
完美世界应助高铭泽采纳,获得10
2分钟前
可耐的盈完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407769
求助须知:如何正确求助?哪些是违规求助? 4525296
关于积分的说明 14101616
捐赠科研通 4439129
什么是DOI,文献DOI怎么找? 2436611
邀请新用户注册赠送积分活动 1428604
关于科研通互助平台的介绍 1406670