In this study, the effect of cationic participation on the swelling behavior and pH-responsive release characteristics of polyelectrolyte hydrogel based on gelatin (Gel), sodium alginate (Alg), and carboxymethyl chitosan (CMCS) was explored. The shell–core morphology of the cationic coordination hydrogels was prepared by introducing Na+, Ca2+, and Fe3+ into the crosslinking system, which significantly altered the inherent pH-responsive swelling properties of Gel/Alg-CMCS hydrogel. The modified hydrogel demonstrated a release resistance of carvacrol (CAR) under acidic conditions while facilitating rapid release under neutral conditions. Notably, the CAR release profile was substantially modified by the distinct anti-swelling properties of cationic coordination hydrogels. In particular, Gel/Alg-CMCS-Fe3+ hydrogel exhibited high accumulative release of 58.34% at pH 1.0 while maintaining a minimal release degree of merely 7% in weakly acidic and neutral environments. These intriguing findings provide valuable insights into intelligent active delivery for future applications.