Dense Phenotyping of Human Brain Network Organization Using Precision fMRI

功能磁共振成像 心理学 认知 变化(天文学) 神经影像学 神经科学 人脑 神经解剖学 大脑定位 认知心理学 大脑活动与冥想 认知神经科学 认知科学 脑电图 天体物理学 物理
作者
Caterina Gratton,Rodrigo M. Braga
出处
期刊:Annual Review of Psychology [Annual Reviews]
标识
DOI:10.1146/annurev-psych-032825-032920
摘要

The advent of noninvasive imaging methods like functional magnetic resonance imaging (fMRI) transformed cognitive neuroscience, providing insights into large-scale brain networks and their link to cognition. In the decades since, the majority of fMRI studies have employed a group-level approach, which has characterized the average brain—a construct that emphasizes features aligned across individuals but obscures the idiosyncrasies of any single person's brain. This is a critical limitation, as each brain is unique, including in the topography (i.e., arrangement) of large-scale brain networks. Recently, a new precision fMRI movement, emphasizing extensive scanning of single subjects, has spurred another leap in progress, allowing fMRI researchers to reliably map whole-brain network organization within individuals. Precision fMRI reveals a more detailed picture of functional neuroanatomy, unveiling common features that are obscured at the group level as well as forms of individual variation. However, this presents conceptual hurdles. For instance, if all brains are unique, how do we identify commonalities? And what forms of variation in functional organization are meaningful for understanding cognition? Which sources of variability are stochastic, and which are due to measurement noise? Here, we review recent findings and describe how precision fMRI can be used ( a ) to account for variation across individuals to identify core principles of brain organization and ( b ) to characterize how and why human brains vary. We argue that, as we dive deeper into the individual, overarching principles of brain organization emerge from fine-scale features, even when these vary across individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那等不到的思恋完成签到 ,获得积分10
刚刚
陈嘉伟发布了新的文献求助10
刚刚
12313213完成签到,获得积分20
1秒前
赘婿应助川上富江采纳,获得10
2秒前
哞哞哞发布了新的文献求助10
2秒前
是晓宇啊应助高等会采纳,获得10
2秒前
Jhon发布了新的文献求助10
3秒前
汁o钟发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Zzz发布了新的文献求助10
4秒前
5秒前
6秒前
简单怡应助滕擎采纳,获得20
8秒前
9秒前
传奇3应助科研民工小叶采纳,获得20
9秒前
9秒前
Akim应助Anglebyebyeye采纳,获得10
9秒前
孤星完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
tip发布了新的文献求助10
13秒前
qwepirt发布了新的文献求助30
13秒前
14秒前
Ava应助ztl采纳,获得30
14秒前
林一发布了新的文献求助10
14秒前
高高大神发布了新的文献求助10
15秒前
斯文败类应助陈嘉伟采纳,获得10
15秒前
川上富江发布了新的文献求助10
16秒前
liu发布了新的文献求助10
16秒前
17秒前
17秒前
Ox1dant发布了新的文献求助10
18秒前
18秒前
科研通AI6应助DQY采纳,获得10
18秒前
轨迹应助年糕炸小羊采纳,获得20
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
song发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704029
求助须知:如何正确求助?哪些是违规求助? 5155235
关于积分的说明 15241017
捐赠科研通 4858219
什么是DOI,文献DOI怎么找? 2607009
邀请新用户注册赠送积分活动 1558105
关于科研通互助平台的介绍 1515929