材料科学
人工光合作用
热电子
电子转移
氧气
还原(数学)
等离子体子
光合作用
析氧
电荷(物理)
氧还原
电子
化学物理
光电子学
光化学
电化学
物理化学
物理
电极
光催化
生物
催化作用
生物化学
化学
几何学
数学
植物
量子力学
作者
Xiaowen Ruan,Minghua Xu,Xinlei Zhang,Chunsheng Ding,Depeng Meng,Jing Leng,Wei Zhang,Sai Kishore Ravi,Xiaoqiang Cui
标识
DOI:10.1002/aenm.202502302
摘要
Abstract Artificial H₂O₂ photosynthesis via plasmonic heterojunction photocatalysts represents a promising route for solar‐to‐chemical energy conversion. However, traditional systems are often limited by inefficient charge separation, inadequate utilization of hot electrons, and non‐specific reaction sites, resulting in suboptimal H₂O₂ production. Here, we present a catalyst architecture that achieves high‐density hot‐electron generation with stepwise charge transfer directed to oxygen reduction sites, boosting H₂O₂ photosynthesis. The catalyst comprises ZnIn₂S₄ (ZIS) nanosheets integrated with two non‐noble plasmonic semiconductors, W 18 O 49 nanoneedles and MoO 3‐X nanosheets. This configuration leverages dual sites for localized surface plasmon resonance (LSPR) to amplify hot‐electron production while enabling sequential charge migration through the double S‐scheme, guiding electrons to reduction sites while minimizing recombination. The optimized Dual‐LSPR‐Double‐S‐Scheme (DLDS) catalyst exhibits a superior H 2 O 2 production rate of 51.3 µmol g⁻¹ min⁻¹ under UV–vis light and 13.6 µmol g⁻¹ min⁻¹ under visible light. Spectroscopic analyses (fs‐TA, XPS, in‐situ DRIFTS) confirm rapid carrier dynamics, efficient hot‐electron accumulation, and formation of reactive oxygen intermediates (*O₂⁻, *OOH) at targeted sites. Theoretical calculations reveal enhanced local electric fields from dual LSPR, corroborating accelerated hot‐electron migration. The produced H₂O₂ is further evaluated for practical applications, including the detoxification of poisoned plants and bacterial inactivation, demonstrating its potential in environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI