清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictive Value of Nervous Cell Injury Biomarkers in Moderate-to-Severe Traumatic Brain Injury: A Network Meta-Analysis.

创伤性脑损伤 医学 荟萃分析 预测值 神经科学 内科学 心理学 精神科
作者
Lilian Maria Godeiro Coelho,Fernanda J.P. Teixeira,Tulay Koru‐Sengul,Brian Manolovitz,Ruby Rose Taylor,Nina Massad,Mohan Kottapally,Amedeo Merenda,Jennifer C. Muñoz Pareja,Juan Pablo de Rivero Vaccari,Robert W. Keane,W. Dalton Dietrich,Kristine O’Phelan,Ayham Alkhachroum
出处
期刊:PubMed 卷期号:105 (5): e213997-e213997
标识
DOI:10.1212/wnl.0000000000213997
摘要

Outcome prediction in traumatic brain injury (TBI) guides treatment decisions. Biomarkers such as S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have shown prognostication value, but relative effectiveness is unknown. This network meta-analysis (NMA) explored the relative predictive value of these 4 biomarkers for mortality and functional outcomes after moderate/severe TBI. Three databases (PubMed, EMBASE, and Cochrane Library) were searched using terms related to TBI, biomarkers, mortality, and functional outcomes (Glasgow Outcome Scale [GOS], GOS-Extended [GOSE]) until June 2024. Primary outcomes were mortality and functional outcomes (GOS/GOSE scores) at 3-12 months after injury. We included studies that provided biomarker levels, sensitivity/specificity values, and outcome measures in adults with moderate/severe TBI. RoB2 and ROBINS-I assessed the risk of bias. Data extraction followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Random-effects models pooled standardized mean difference (SMD), sensitivity, and specificity. Bayesian NMA estimated odds ratios (ORs) and 95% CIs to evaluate indirect comparisons between the biomarkers. Of 1,680 studies, we included 32 (n = 2,401). We found statistically significant effects for S100B (SMD = 1.35 [0.99-1.71], I2 = 83%), GFAP (SMD = 2.25 [1.40-3.11], I2 = 94%), NSE (SMD = 0.71 [0.12-1.29], I2 = 88%), and UCH-L1 (mean difference [MD] = 1.06 [0.72-1.40], I2 = 57%) in predicting mortality. For functional outcomes, S100B had SMD of 0.80 (0.58-1.01, I2 = 62%), GFAP had SMD of 1.03 (0.65-1.41, I2 = 89%), NSE had SMD of 0.73 (0.52-0.94, I2 = 41%), and UCH-L1 had MD of 0.86 (0.72-1.00, I2 = 0%). Earlier sampling periods (<12 hours) were associated with more consistent and reliable results across all biomarkers. NSE had the highest sensitivity for mortality (88%, 77%-93%), and UCH-L1 had the highest specificity (89%, 76%-95%). S100B had the highest sensitivity for unfavorable functional outcomes (74%, 55%-88%), and GFAP had the highest specificity (84%, 71%-91%). With low comparative heterogeneity, NSE had the highest rank probability for mortality prediction while UCH-L1 predicted unfavorable functional outcomes. Our findings suggest that S100B, GFAP, NSE, and UCH-L1 have predictive value for mortality and functional outcomes in moderate/severe TBI. NSE was the most effective biomarker for predicting mortality. By contrast, UCH-L1 ranked highest for predicting unfavorable functional outcomes. Further research is needed to standardize protocols for measuring/providing data on biomarkers and to integrate them into predictive models for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spinon完成签到,获得积分10
2秒前
lucinda完成签到 ,获得积分10
20秒前
22秒前
29秒前
追梦完成签到,获得积分10
30秒前
31秒前
ParkMoonJ发布了新的文献求助10
33秒前
Lily发布了新的文献求助10
36秒前
华仔应助靓丽的傲芙采纳,获得10
42秒前
47秒前
ParkMoonJ完成签到,获得积分10
48秒前
木木大猫发布了新的文献求助10
52秒前
毛毛完成签到 ,获得积分10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
汉堡包应助科研通管家采纳,获得20
57秒前
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
李健应助科研通管家采纳,获得10
57秒前
坚定蘑菇完成签到 ,获得积分10
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
招财进宝宝完成签到 ,获得积分10
1分钟前
yy完成签到 ,获得积分10
1分钟前
ninini完成签到 ,获得积分10
1分钟前
没有昵称完成签到,获得积分20
1分钟前
酷酷的紫南完成签到 ,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
Laraineww完成签到 ,获得积分10
1分钟前
niqiu完成签到 ,获得积分10
1分钟前
木木大猫完成签到,获得积分10
1分钟前
BMG完成签到,获得积分10
2分钟前
臣臣想睡觉完成签到,获得积分10
2分钟前
啪嗒大白球完成签到,获得积分10
2分钟前
积极的尔白完成签到 ,获得积分10
2分钟前
guoyufan完成签到,获得积分10
2分钟前
yzz完成签到,获得积分10
2分钟前
呵呵哒完成签到,获得积分10
2分钟前
qq完成签到,获得积分10
2分钟前
张浩林完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
BowieHuang完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5781009
求助须知:如何正确求助?哪些是违规求助? 5661438
关于积分的说明 15453727
捐赠科研通 4911338
什么是DOI,文献DOI怎么找? 2643515
邀请新用户注册赠送积分活动 1591169
关于科研通互助平台的介绍 1545754