Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis

光催化 热电子 等离子体子 电子 材料科学 电子结构 纳米技术 光化学 化学物理 光电子学 化学 催化作用 物理 计算化学 生物化学 量子力学
作者
Xiaoya Huang,Xinyuan Li,Akang Chen,Hongfei Gu,Shouyuan Li,Tailei Hou,Shuwen Zhu,Shuang Yu,Yin Song,Jiatao Zhang
出处
期刊:Nano Research [Springer Nature]
卷期号:17 (8): 6960-6967 被引量:13
标识
DOI:10.1007/s12274-024-6706-2
摘要

Single atom (SA) catalysts have achieved great success on highly selective heterogeneous catalysis due to their abundant and homogeneous active sites. The electronic structures of these active sites, restrained by their localized coordination environments, significantly determine their catalytic performances, which are difficult to manipulate. Here, we investigated the effect of localized surface plasmon resonance (LSPR) on engineering the electronic structures of single atomic sites. Typically, core-shell structures consisted of Au core and transition metal SAs loaded N-doped carbon (CN) shell were constructed, namely Au@M-SA/CN (M = Ni, Fe, and Co). It was demonstrated that plasmon-induced hot electrons originated from Au were directionally injected to the M-SAs under visible light irradiation, which significantly changed their electronic structures and meanwhile facilitated improved overall charge separation efficiency. The as-prepared Au@Ni-SA/CN exhibited highly efficient and selective photocatalytic CO2 reduction to CO performance, which is 20.8, 17.5, and 6.9 times those of Au nanoparticles, Au@CN, and Ni-SA/CN, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the plasmon enhanced Ni-SA/CN sites featured increased charge density for efficient intermediate activation, contributing to the superb photocatalytic performance. The work provides a new insight on plasmon and atomic site engineering for efficient and selective catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我的娃完成签到,获得积分10
2秒前
落后成仁关注了科研通微信公众号
2秒前
小二郎应助丘奇采纳,获得10
2秒前
Moly完成签到,获得积分10
4秒前
张虹完成签到,获得积分10
5秒前
Breeze完成签到,获得积分10
6秒前
所所应助2333采纳,获得10
6秒前
WangLu2025发布了新的文献求助30
6秒前
JamesPei应助柯不正采纳,获得30
7秒前
小蘑菇应助MHB采纳,获得10
9秒前
彭于晏应助卜谷雪采纳,获得10
10秒前
10秒前
10秒前
旁观者应助wangjinweige6293采纳,获得10
11秒前
aaaaaa发布了新的文献求助20
13秒前
13秒前
布丁拿铁完成签到 ,获得积分10
13秒前
所所应助zzc采纳,获得10
13秒前
寒安发布了新的文献求助50
13秒前
量子星尘发布了新的文献求助30
14秒前
14秒前
佛系养生发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
bkagyin应助优美紫槐采纳,获得10
16秒前
16秒前
17秒前
17秒前
17秒前
18秒前
19秒前
thchiang发布了新的文献求助10
20秒前
马依菲发布了新的文献求助10
20秒前
MHB发布了新的文献求助10
21秒前
晨屿发布了新的文献求助10
21秒前
xinzhao发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755