主成分分析
功能数据分析
函数主成分分析
计算机科学
组分(热力学)
多级模型
全国健康与营养检查调查
功能(生物学)
统计
数据挖掘
数学
人工智能
机器学习
医学
人口
物理
环境卫生
热力学
生物
进化生物学
作者
Erjia Cui,Ruonan Li,Ciprian M. Crainiceanu,Luo Xiao
标识
DOI:10.1080/10618600.2022.2115500
摘要
We introduce fast multilevel functional principal component analysis (fast MFPCA), which scales up to high dimensional functional data measured at multiple visits. The new approach is orders of magnitude faster than and achieves comparable estimation accuracy with the original MFPCA (Di et al., 2009). Methods are motivated by the National Health and Nutritional Examination Survey (NHANES), which contains minute-level physical activity information of more than 10000 participants over multiple days and 1440 observations per day. While MFPCA takes more than five days to analyze these data, fast MFPCA takes less than five minutes. A theoretical study of the proposed method is also provided. The associated function mfpca.face() is available in the R package refund.
科研通智能强力驱动
Strongly Powered by AbleSci AI