Preoperatively Predicting Ki67 Expression in Pituitary Adenomas Using Deep Segmentation Network and Radiomics Analysis Based on Multiparameter MRI

列线图 无线电技术 接收机工作特性 人工智能 分割 医学 深度学习 计算机科学 肿瘤科 内科学
作者
Hongxia Li,Zhiling Liu,Fuyan Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 617-627 被引量:12
标识
DOI:10.1016/j.acra.2023.05.023
摘要

Rationale and Objectives

Ki67 proliferation index is associated with more aggressive tumor behavior and recurrence of pituitary adenomas (PAs). Recently, radiomics and deep learning have been introduced into the study of pituitary tumors. The present study aimed to investigate the feasibility of predicting the Ki67 proliferation index of PAs using the deep segmentation network and radiomics analysis based on multiparameter MRI.

Materials and Methods

First, the cfVB-Net autosegmentation model was trained; subsequently, its performance was evaluated in terms of the dice similarity coefficient (DSC). In the present study, 1214 patients were classified into the high Ki67 expression group (HG) and the low Ki67 expression group (LG). Analyses of three classification models based on radiomics features were performed to distinguish HG from LG. Clinical factors, imaging features, and Radscores were collectively used to create a nomogram in order to effectively predict Ki67 expression.

Results

The cfVB-Net segmentation model demonstrated good performance (DSC: 0.723–0.930). Overall, 18, 15, and 11 optimal features in contrast-enhanced (CE) T1WI, T1WI, and T2WI were obtained for differentiating between HG and LG, respectively. Notably, the best results were presented in the bagging decision tree when CE T1WI and T1WI were combined (area under the receiver operating characteristic curve: training set, 0.927; validation set, 0.831; and independent testing set, 0.825). In the nomogram, age, Hardy' grade, and Radscores were identified as risk predictors of high Ki67 expression.

Conclusion

The deep segmentation network and radiomics analysis based on multiparameter MRI exhibited good performance and clinical application value in predicting the expression of Ki67 in PAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
徐不想搞科研完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
lzr完成签到 ,获得积分10
5秒前
chen完成签到,获得积分10
5秒前
5秒前
共享精神应助一二采纳,获得10
5秒前
虎虎虎完成签到,获得积分10
5秒前
qzy完成签到,获得积分10
6秒前
香蕉觅云应助李志伟采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
jzw发布了新的文献求助10
7秒前
等流心发布了新的文献求助10
7秒前
OsHTAS发布了新的文献求助10
7秒前
wzwz发布了新的文献求助10
7秒前
8秒前
在水一方应助淡定的竺采纳,获得10
8秒前
8秒前
心灵美凝竹完成签到 ,获得积分10
9秒前
10秒前
Ayanami发布了新的文献求助10
11秒前
Hello应助cy采纳,获得30
12秒前
12秒前
最后一个天才完成签到,获得积分10
13秒前
莓莓发布了新的文献求助10
13秒前
zhangmeimei发布了新的文献求助10
15秒前
浮游应助Ayanami采纳,获得10
15秒前
Hilda007应助Terry采纳,获得10
15秒前
17秒前
17秒前
OsHTAS完成签到,获得积分10
18秒前
小庄完成签到 ,获得积分10
18秒前
18秒前
栗子完成签到 ,获得积分10
19秒前
Ayanami完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405