Preoperatively Predicting Ki67 Expression in Pituitary Adenomas Using Deep Segmentation Network and Radiomics Analysis Based on Multiparameter MRI

列线图 无线电技术 接收机工作特性 人工智能 分割 医学 深度学习 计算机科学 肿瘤科 内科学
作者
Hongxia Li,Zhiling Liu,Fuyan Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 617-627 被引量:12
标识
DOI:10.1016/j.acra.2023.05.023
摘要

Rationale and Objectives

Ki67 proliferation index is associated with more aggressive tumor behavior and recurrence of pituitary adenomas (PAs). Recently, radiomics and deep learning have been introduced into the study of pituitary tumors. The present study aimed to investigate the feasibility of predicting the Ki67 proliferation index of PAs using the deep segmentation network and radiomics analysis based on multiparameter MRI.

Materials and Methods

First, the cfVB-Net autosegmentation model was trained; subsequently, its performance was evaluated in terms of the dice similarity coefficient (DSC). In the present study, 1214 patients were classified into the high Ki67 expression group (HG) and the low Ki67 expression group (LG). Analyses of three classification models based on radiomics features were performed to distinguish HG from LG. Clinical factors, imaging features, and Radscores were collectively used to create a nomogram in order to effectively predict Ki67 expression.

Results

The cfVB-Net segmentation model demonstrated good performance (DSC: 0.723–0.930). Overall, 18, 15, and 11 optimal features in contrast-enhanced (CE) T1WI, T1WI, and T2WI were obtained for differentiating between HG and LG, respectively. Notably, the best results were presented in the bagging decision tree when CE T1WI and T1WI were combined (area under the receiver operating characteristic curve: training set, 0.927; validation set, 0.831; and independent testing set, 0.825). In the nomogram, age, Hardy' grade, and Radscores were identified as risk predictors of high Ki67 expression.

Conclusion

The deep segmentation network and radiomics analysis based on multiparameter MRI exhibited good performance and clinical application value in predicting the expression of Ki67 in PAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想读博的小羊完成签到,获得积分20
1秒前
双景完成签到,获得积分20
1秒前
msk完成签到,获得积分10
1秒前
万能图书馆应助浆糊采纳,获得10
2秒前
2秒前
千空应助clovershaw采纳,获得10
2秒前
2秒前
2秒前
饱满的小猫咪完成签到,获得积分10
2秒前
村里傻小子完成签到,获得积分10
2秒前
3秒前
4秒前
少堂完成签到,获得积分10
4秒前
4秒前
msk发布了新的文献求助10
4秒前
完美世界应助亦犹未进采纳,获得10
5秒前
5秒前
香蕉觅云应助xx采纳,获得10
6秒前
领导范儿应助马明旋采纳,获得10
6秒前
7秒前
凡城发布了新的文献求助10
7秒前
7秒前
hqr3000发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
A拉拉拉发布了新的文献求助10
9秒前
无辜夜白给无辜夜白的求助进行了留言
9秒前
9秒前
9秒前
10秒前
10秒前
我嘞个豆发布了新的文献求助10
11秒前
年年完成签到,获得积分10
11秒前
传奇3应助欣喜的香彤采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369757
求助须知:如何正确求助?哪些是违规求助? 3867951
关于积分的说明 12059793
捐赠科研通 3510614
什么是DOI,文献DOI怎么找? 1926546
邀请新用户注册赠送积分活动 968488
科研通“疑难数据库(出版商)”最低求助积分说明 867514