Benchmark of Coacervate Formation and Mechanism Exploration Using the Martini Force Field

凝聚 水准点(测量) 机制(生物学) 领域(数学) 力场(虚构) 计算机科学 纳米技术 数据科学 人机交互 生化工程 化学 人工智能 材料科学 工程类 物理 地理 数学 地图学 色谱法 量子力学 纯数学
作者
Rongrong Zou,Yiwei Wang,Xiu Zhang,Yeqiang Zhou,Yang Liu,Mingming Ding
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01571
摘要

Peptide-based coacervates are crucial for drug delivery due to their biocompatibility, versatility, high drug loading capacity, and cell penetration rates; however, their stability mechanism and phase behavior are not fully understood. Additionally, although Martini is one of the most famous force fields capable of describing coacervate formation with molecular details, a comprehensive benchmark of its accuracy has not been conducted. This research utilized the Martini 3.0 force field and machine learning algorithms to explore representative peptide-based coacervates, including those composed of polyaspartate (PAsp)/polyarginine (PArg), rmfp-1, sticker-and-spacer small molecules, and HBpep molecules. We identified key coacervate formation driving forces such as Coulomb, cation–π, and π–π interactions and established three criteria for determining coacervate formation in simulations. The results also indicate that while Martini 3.0 accurately captures coacervate formation trends, it tends to underestimate Coulomb interactions and overestimate π–π interactions. What is more, our study on drug encapsulation of HBpep and its derivative coacervates suggested that most loaded drugs were distributed on surfaces of HBpep clusters, awaiting experimental validation. This study employs simulation to enhance understanding of peptide-based coacervate phase behavior and stability mechanisms while also benchmarking Martini 3.0, thereby providing fundamental insights for future experimental and simulation investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助caicai采纳,获得10
刚刚
刚刚
尼古丁真应助czx采纳,获得10
2秒前
3秒前
百慕发布了新的文献求助10
6秒前
藏沙完成签到 ,获得积分10
6秒前
7秒前
所所应助科研通管家采纳,获得30
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
糊涂小白发布了新的文献求助10
11秒前
木头人应助科研通管家采纳,获得20
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
纪贝贝完成签到,获得积分10
13秒前
13秒前
小白白发布了新的文献求助10
13秒前
14秒前
褚褚关注了科研通微信公众号
14秒前
caicai完成签到,获得积分10
15秒前
15秒前
小马甲应助Quinny采纳,获得10
16秒前
zaizai完成签到,获得积分10
17秒前
似水流年发布了新的文献求助30
17秒前
17秒前
Abner发布了新的文献求助10
19秒前
19秒前
beyond发布了新的文献求助10
19秒前
20秒前
21秒前
12发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482307
求助须知:如何正确求助?哪些是违规求助? 3938445
关于积分的说明 12217813
捐赠科研通 3593627
什么是DOI,文献DOI怎么找? 1976245
邀请新用户注册赠送积分活动 1013373
科研通“疑难数据库(出版商)”最低求助积分说明 906552