Nudging Perceived Credibility: The Impact of AIGC Labeling on User Distinction of AI-Generated Content

可靠性 内容(测量理论) 用户生成的内容 来源可信度 心理学 计算机科学 情报检索 万维网 认识论 哲学 数学 社会化媒体 数学分析
作者
Fan Li,Yang Ya,Guoming Yu
标识
DOI:10.1177/27523543251317572
摘要

The rapid advancement of generative artificial intelligence (AI) has made AI-generated content (AIGC) increasingly prevalent. However, misinformation created by AI has also gained significant traction in online consumption, while individuals often lack the skills and attribues needed to distinguish AIGC from traditional content. In response, current media practices have introduced AIGC labels as a potential intervention. This study investigates whether AIGC labels influence users’ perceptions of credibility, accounting for differences in prior experience and content categories. An online experiment was conducted to simulate a realistic media environment, involving 236 valid participants. The findings reveal that the main effect of AIGC labels on perceived credibility is not significant. However, both prior experience and content category show significant main effects ( P < .001), with participants who have greater prior experience perceiving nonprofit content as more credible. Two significant interaction effects were also identified: between content category and prior experience, and between AIGC labels and prior experience ( P < .001). Specifically, participants with limited prior experience exhibited notable differences in trust depending on the content category ( P < .001), while those with extensive prior experience showed no significant differences in trust across content categories ( P = .06). This study offers several key insights. First, AIGC labels serve as a viable and replicable intervention that does not significantly alter perceptions of credibility for AIGC. Second, by reshaping the choice architecture, AIGC labels can help address digital inequalities. Third, AIGC labeling extends alignment theory from implicit value alignment to explicit human–machine interaction alignment. Fourth, the long-term effects of AIGC labels, such as the potential for implicit truth effects with prolonged use, warrant further attention. Lastly, this study provides practical implications for media platforms, users, and policymakers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科研通AI2S应助abb采纳,获得10
3秒前
4秒前
4秒前
nbhh完成签到,获得积分10
4秒前
Bill Wang完成签到 ,获得积分0
5秒前
贪玩的访风完成签到 ,获得积分10
6秒前
Yuki完成签到,获得积分10
7秒前
可爱的函函应助Alex采纳,获得10
9秒前
阳光发布了新的文献求助10
9秒前
yangllln发布了新的文献求助10
9秒前
MeiyanZou完成签到 ,获得积分10
10秒前
橙子fy16_完成签到,获得积分10
11秒前
12秒前
13秒前
Alex完成签到,获得积分20
14秒前
tulips完成签到 ,获得积分10
17秒前
yw发布了新的文献求助30
17秒前
yjf完成签到,获得积分10
21秒前
lascqy完成签到 ,获得积分10
22秒前
24秒前
上官若男应助樱桃采纳,获得10
28秒前
Erxat发布了新的文献求助10
29秒前
Jasper应助聪慧的绿兰采纳,获得10
32秒前
李爱国应助木mu采纳,获得30
32秒前
鼠鼠完成签到 ,获得积分10
33秒前
开心友儿完成签到,获得积分10
34秒前
34秒前
lixy完成签到,获得积分10
37秒前
guangyu完成签到,获得积分10
37秒前
阿银完成签到,获得积分10
38秒前
汤汤完成签到,获得积分10
38秒前
大模型应助万里采纳,获得10
39秒前
思源应助Robin采纳,获得10
40秒前
樱桃发布了新的文献求助10
41秒前
FashionBoy应助庾海采纳,获得10
43秒前
宇宇宇c完成签到,获得积分10
44秒前
旺旺碎完成签到 ,获得积分10
47秒前
今后应助WhY采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327450
关于积分的说明 10231409
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758822