Artificial Intelligence‐Based Electric Vehicle Charging Station Load Forecasting Scheme for Smart Grid System

计算机科学 方案(数学) 智能电网 电动汽车 网格 充电站 实时计算 汽车工程 电气工程 工程类 数学 功率(物理) 量子力学 数学分析 物理 几何学
作者
Riya Kakkar,Smita Agrawal,Sudeep Tanwar
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (9-11)
标识
DOI:10.1002/cpe.70083
摘要

ABSTRACT The electrification and evolvement of intelligent transportation systems (ITS) have proved to be a breakthrough paradigm for adopting the indispensable benefits of electric vehicles (EVs) in the automotive industry. This necessitates intelligent energy management during the communication between the EVs and the charging stations (CS), which is one of the critical concerns due to the huge electricity demand for EVs. Thus, many authors have adopted the smart grid as an intelligent power distribution infrastructure, which requires the EV CS load forecasting to analyze the energy consumption at CS. Therefore, we propose an artificial intelligence (AI)‐based EV CS load forecasting scheme adopting the benefits of smart grid environment. Consequently, we foremost consider EV charging data to predict state‐of‐charge (SoC) using an AI‐based sequential model based on that CS issues an energy request to the smart grid. For that, we contemplate considering CS data and predicting the energy usage of different locations based on various parameters using a sequential model. Thus, the proposed EV CS load forecasting facilitates efficient energy transfer from the smart grid to CS for optimal EV charging. The performance evaluation of the proposed scheme is analyzed considering the EV charging dataset with metrics such as EV SoC prediction comparison, error prediction with battery voltage, and mean square error (MSE (0.0007)), mean absolute error (MAE (0.019)), and error prediction with charging time for CS dataset in which Adam optimizer outperform other optimizers (RMSprop and Adadelta) attaining the efficient load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感小白菜完成签到,获得积分10
刚刚
1U完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
小猪完成签到 ,获得积分10
1秒前
zzyyxx完成签到,获得积分10
1秒前
汪蔓蔓发布了新的文献求助20
2秒前
天马发布了新的文献求助10
3秒前
hh发布了新的文献求助10
3秒前
LJqq发布了新的文献求助10
4秒前
4秒前
怡然的晓丝完成签到 ,获得积分10
5秒前
星辰大海应助红豆采纳,获得10
5秒前
6秒前
6秒前
她说肚子是吃大的i完成签到,获得积分10
6秒前
科研通AI6应助wp采纳,获得10
6秒前
7秒前
英姑应助时之砂采纳,获得10
7秒前
霞霞完成签到,获得积分20
7秒前
天天快乐应助随心随意采纳,获得10
8秒前
柔弱亦寒完成签到,获得积分10
8秒前
王小磊完成签到,获得积分10
8秒前
wxy发布了新的文献求助10
10秒前
10秒前
10秒前
简历发布了新的文献求助10
11秒前
霞霞发布了新的文献求助20
11秒前
11秒前
抗敏小d完成签到 ,获得积分10
11秒前
陈龙发布了新的文献求助10
13秒前
13秒前
13秒前
liu发布了新的文献求助10
15秒前
giotto发布了新的文献求助10
15秒前
打打应助hhdong采纳,获得10
16秒前
16秒前
HXXXY完成签到,获得积分10
16秒前
SRsora发布了新的文献求助10
16秒前
fafa发布了新的文献求助10
17秒前
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583497
求助须知:如何正确求助?哪些是违规求助? 4667329
关于积分的说明 14766586
捐赠科研通 4609506
什么是DOI,文献DOI怎么找? 2529221
邀请新用户注册赠送积分活动 1498459
关于科研通互助平台的介绍 1467101