The Current Research Landscape on the Machine Learning Application in Autism Spectrum Disorder: A Bibliometric Analysis From 1999 to 2023

自闭症谱系障碍 科学网 中国 文献计量学 心理学 自闭症 人工智能 图书馆学 医学教育 计算机科学 政治学 医学 梅德林 精神科 法学
作者
Xinyu Li,Wei Huang,Rongrong Tan,Caijuan Xu,Xi Chen,Qian Zhang,Sixin Li,Ying Liu,Huiwen Qiu,Changlong Bi,Hui Cao
出处
期刊:Current Neuropharmacology [Bentham Science Publishers]
卷期号:23
标识
DOI:10.2174/011570159x332833241222191422
摘要

Language deficits, restricted and repetitive interests, and social difficulties are among the characteristics of autism spectrum disorder (ASD). Machine learning and neuroimaging have also been combined to examine ASD. Utilizing bibliometric analysis, this study examines the current state and hot topics in machine learning for ASD. A research bibliometric analysis of the machine learning application in ASD trends, including research trends and the most popular topics, as well as proposed future directions for research. From 1999 to 2023, the Web of Science Core Collection (WoSCC) was searched for publications relating to machine learning and ASD. Authors, articles, journals, institutions, and countries were characterized using Microsoft Excel 2021 and VOSviewer. Analysis of knowledge networks, collaborative maps, hotspots, and trends was conducted using VOSviewer and CiteSpace. A total of 1357 papers were identified between 1999 and 2023. There was a slow growth in publications until 2016; then, between 2017 and 2023, a sharp increase was recorded. Among the most important contributors to this field were the United States, China, India, and England. Among the top major research institutions with numerous publications were Stanford University, Harvard Medical School, the University of California, the University of Pennsylvania, and the Chinese Academy of Sciences. Wall, Dennis P. was the most productive and highest-cited author. Scientific Reports, Frontiers In Neuroscience Autism Research, and Frontiers In Psychiatry were the three productive journals. "autism spectrum disorder", "machine learning", "children", "classification" and "deep learning" are the central topics in this period. Cooperation and communication between countries/regions need to be enhanced in future research. A shift is taking place in the research hotspot from "Alzheimer's Disease", "Mild Cognitive Impairment" and "cortex" to "artificial intelligence", "deep learning", "electroencephalography" and "pediatrics". Crowdsourcing machine learning applications and electroencephalography for ASD diagnosis should be the future development direction. Future research about these hot topics would promote understanding in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方百招完成签到,获得积分10
1秒前
麻瓜禁止使用魔法完成签到,获得积分10
2秒前
2秒前
Rain完成签到,获得积分10
2秒前
赎罪完成签到 ,获得积分10
2秒前
2秒前
超级的千青完成签到 ,获得积分10
3秒前
加百莉发布了新的文献求助10
3秒前
DarrenVan完成签到,获得积分10
4秒前
4秒前
ks完成签到,获得积分10
4秒前
ztl完成签到 ,获得积分10
5秒前
秋思冬念完成签到 ,获得积分10
5秒前
找找找文献完成签到,获得积分10
6秒前
Ava应助雷雨田采纳,获得10
6秒前
85WQQn发布了新的文献求助10
7秒前
急急急完成签到,获得积分10
7秒前
YY完成签到 ,获得积分10
8秒前
妮妮发布了新的文献求助10
8秒前
Hou完成签到,获得积分10
8秒前
不是山谷完成签到,获得积分10
8秒前
Owen应助WYY采纳,获得10
8秒前
Ann完成签到,获得积分10
9秒前
随机完成签到,获得积分10
9秒前
柒辞完成签到,获得积分10
9秒前
SHX发布了新的文献求助10
10秒前
称心的语梦完成签到,获得积分10
10秒前
Dog发布了新的文献求助10
11秒前
高贵的往事完成签到,获得积分10
11秒前
junjun2011完成签到,获得积分10
11秒前
11秒前
Xltox完成签到,获得积分10
11秒前
土豆完成签到,获得积分10
12秒前
科2研7通完成签到,获得积分10
12秒前
义气高丽完成签到 ,获得积分10
12秒前
沙与沫完成签到 ,获得积分10
12秒前
三笠完成签到,获得积分10
12秒前
xuhang完成签到,获得积分10
13秒前
CL完成签到,获得积分10
13秒前
junkljsun完成签到 ,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642