Noise Reduction in Hyperspectral Imagery: Overview and Application

高光谱成像 降噪 计算机科学 预处理器 噪音(视频) 遥感 人工智能 模式识别(心理学) 计算机视觉 图像(数学) 地理
作者
Behnood Rasti,Paul Scheunders,Pedram Ghamisi,Giorgio Licciardi,Jocelyn Chanussot
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:10 (3): 482-482 被引量:265
标识
DOI:10.3390/rs10030482
摘要

Hyperspectral remote sensing is based on measuring the scattered and reflected electromagnetic signals from the Earth’s surface emitted by the Sun. The received radiance at the sensor is usually degraded by atmospheric effects and instrumental (sensor) noises which include thermal (Johnson) noise, quantization noise, and shot (photon) noise. Noise reduction is often considered as a preprocessing step for hyperspectral imagery. In the past decade, hyperspectral noise reduction techniques have evolved substantially from two dimensional bandwise techniques to three dimensional ones, and varieties of low-rank methods have been forwarded to improve the signal to noise ratio of the observed data. Despite all the developments and advances, there is a lack of a comprehensive overview of these techniques and their impact on hyperspectral imagery applications. In this paper, we address the following two main issues; (1) Providing an overview of the techniques developed in the past decade for hyperspectral image noise reduction; (2) Discussing the performance of these techniques by applying them as a preprocessing step to improve a hyperspectral image analysis task, i.e., classification. Additionally, this paper discusses about the hyperspectral image modeling and denoising challenges. Furthermore, different noise types that exist in hyperspectral images have been described. The denoising experiments have confirmed the advantages of the use of low-rank denoising techniques compared to the other denoising techniques in terms of signal to noise ratio and spectral angle distance. In the classification experiments, classification accuracies have improved when denoising techniques have been applied as a preprocessing step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shijin发布了新的文献求助10
1秒前
18746005898完成签到 ,获得积分10
2秒前
3秒前
我超爱cs完成签到,获得积分10
6秒前
liars完成签到 ,获得积分10
6秒前
52pry发布了新的文献求助10
7秒前
chinh完成签到,获得积分10
8秒前
Muller完成签到,获得积分10
9秒前
9秒前
sym发布了新的文献求助10
11秒前
性感母蟑螂完成签到 ,获得积分10
12秒前
13秒前
顾矜应助李大壮采纳,获得10
15秒前
小二郎应助心灵美的紫槐采纳,获得10
17秒前
20秒前
是小越啊发布了新的文献求助10
23秒前
23秒前
超级小刺猬完成签到 ,获得积分10
23秒前
zsx发布了新的文献求助10
24秒前
27秒前
心灵美的紫槐完成签到,获得积分20
28秒前
28秒前
Cuz完成签到,获得积分10
29秒前
30秒前
霍师傅发布了新的文献求助10
32秒前
33秒前
李大壮发布了新的文献求助10
33秒前
35秒前
大模型应助霍师傅采纳,获得30
35秒前
wy.he应助科研通管家采纳,获得10
36秒前
wy.he应助科研通管家采纳,获得10
36秒前
华仔应助科研通管家采纳,获得10
36秒前
wy.he应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
37秒前
led完成签到,获得积分10
39秒前
贪玩小小完成签到 ,获得积分10
39秒前
哈哈客发布了新的文献求助30
41秒前
阮大帅气发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549