卷积(计算机科学)
独立同分布随机变量
随机排序
顺序统计量
随机变量
数学
可靠性(半导体)
指数函数
指数族
指数分布
应用数学
可靠性理论
订单(交换)
组分(热力学)
统计物理学
光学(聚焦)
计算机科学
统计
数学分析
故障率
人工智能
物理
功率(物理)
财务
量子力学
人工神经网络
光学
经济
热力学
作者
Moshe Shaked,Alfonso Suárez‐Llorens
标识
DOI:10.1198/016214503000000602
摘要
In this article we study the comparison of experiments in system reliability theory when the component lifetimes are independent and identically distributed random variables that have a common two-parameter exponential distribution with a location parameter θ. For this purpose, we define a new stochastic order, which we call the convolution order, and study some basic properties of it. We then focus our attention on the family of distribution functions that are mixtures of distributions of partial sums of independent exponential random variables, and derive results that identify several conditions under which members of this family are ordered in the convolution stochastic order. We apply the results to order lifetimes of coherent systems, and as a consequence we obtain information inequalities among various lifetimes of coherent systems. We find situations wherein high reliability decreases statistical information.
科研通智能强力驱动
Strongly Powered by AbleSci AI