汉密尔顿-雅各比-贝尔曼方程
控制理论(社会学)
最优控制
自适应控制
强化学习
代数Riccati方程
非线性系统
动力系统理论
计算机科学
控制工程
Riccati方程
系统标识
线性二次高斯控制
数学优化
控制(管理)
数学
人工智能
微分方程
工程类
数据建模
物理
数学分析
数据库
量子力学
作者
Frank L. Lewis,Draguna Vrabie,Kyriakos G. Vamvoudakis
出处
期刊:IEEE Control Systems Magazine
[Institute of Electrical and Electronics Engineers]
日期:2012-11-16
卷期号:32 (6): 76-105
被引量:949
标识
DOI:10.1109/mcs.2012.2214134
摘要
This article describes the use of principles of reinforcement learning to design feedback controllers for discrete- and continuous-time dynamical systems that combine features of adaptive control and optimal control. Adaptive control [1], [2] and optimal control [3] represent different philosophies for designing feedback controllers. Optimal controllers are normally designed of ine by solving Hamilton JacobiBellman (HJB) equations, for example, the Riccati equation, using complete knowledge of the system dynamics. Determining optimal control policies for nonlinear systems requires the offline solution of nonlinear HJB equations, which are often difficult or impossible to solve. By contrast, adaptive controllers learn online to control unknown systems using data measured in real time along the system trajectories. Adaptive controllers are not usually designed to be optimal in the sense of minimizing user-prescribed performance functions. Indirect adaptive controllers use system identification techniques to first identify the system parameters and then use the obtained model to solve optimal design equations [1]. Adaptive controllers may satisfy certain inverse optimality conditions [4].
科研通智能强力驱动
Strongly Powered by AbleSci AI