矩阵分解
秩(图论)
奇异值分解
范畴变量
算法
基质(化学分析)
缺少数据
数据集
聚类分析
非负矩阵分解
计算机科学
集合(抽象数据类型)
低秩近似
数学
边距(机器学习)
因式分解
数据挖掘
人工智能
组合数学
特征向量
机器学习
复合材料
数学分析
程序设计语言
汉克尔矩阵
材料科学
物理
量子力学
作者
Madeleine Udell,Corinne Horn,Reza Bosagh Zadeh,Stephen Boyd
出处
期刊:now publishers, Inc. eBooks
[now publishers, Inc.]
日期:2016-01-01
被引量:176
标识
DOI:10.1561/9781680831412
摘要
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix.Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types.This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization.The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously.It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features.We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI