Quantifying tropical forest structure through terrestrial and UAV laser scanning fusion in Australian rainforests

点云 遥感 激光雷达 牙冠(牙科) 胸径 热带雨林 雨林 环境科学 激光扫描 比例(比率) 树(集合论) 计算机科学 地理 林业 生态学 数学 激光器 地图学 物理 人工智能 生物 光学 医学 数学分析 牙科
作者
Louise Terryn,Kim Calders,Harm Bartholomeus,Renée E. Bartolo,Benjamin Brede,Barbara D’hont,Mathias Disney,Martin Herold,Alvaro Lau,Alexander Shenkin,Timothy G. Whiteside,Phil Wilkes,Hans Verbeeck
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:271: 112912-112912 被引量:65
标识
DOI:10.1016/j.rse.2022.112912
摘要

Accurately quantifying tree and forest structure is important for monitoring and understanding terrestrial ecosystem functioning in a changing climate. The emergence of laser scanning, such as Terrestrial Laser Scanning (TLS) and Unoccupied Aerial Vehicle Laser Scanning (UAV-LS), has advanced accurate and detailed forest structural measurements. TLS generally provides very accurate measurements on the plot-scale (a few ha), whereas UAV-LS provides comparable measurements on the landscape-scale (>10 ha). Despite the pivotal role dense tropical forests play in our climate, the strengths and limitations of TLS and UAV-LS to accurately measure structural metrics in these forests remain largely unexplored. Here, we propose to combine TLS and UAV-LS data from dense tropical forest plots to analyse how this fusion can further advance 3D structural mapping of structurally complex forests. We compared stand (vertical point distribution profiles) and tree level metrics from TLS, UAV-LS as well as their fused point cloud. The tree level metrics included the diameter at breast height (DBH), tree height (H), crown projection area (CPA), and crown volume (CV). Furthermore, we evaluated the impact of point density and number of returns for UAV-LS data acquisition. DBH measurements from TLS and UAV-LS were compared to census data. The TLS and UAV-LS based H, CPA and CV measurements were compared to those obtained from the fused point cloud. Our results for two tropical rainforest plots in Australia demonstrate that TLS can measure H, CPA and CV with an accuracy (RMSE) of 0.30 m (Haverage =27.32 m), 3.06 m2 (CPAaverage =66.74 m2), and 29.63 m3 (CVaverage =318.81 m3) respectively. UAV-LS measures H, CPA and CV with an accuracy (RMSE) of <0.40 m, <5.50 m2, and <30.33 m3 respectively. However, in dense tropical forests single flight UAV-LS is unable to sample the tree stems sufficiently for DBH measurement due to a limited penetration of the canopy. TLS can determine DBH with an accuracy (RMSE) of 5.04 cm, (DBHaverage =45.08 cm), whereas UAV-LS can not. We show that in dense tropical forests stand-alone TLS is able to measure macroscopic structural tree metrics on plot-scale. We also show that UAV-LS can be used to quickly measure H, CPA, and CV of canopy trees on the landscape-scale with comparable accuracy to TLS. Hence, the fusion of TLS and UAV-LS, which can be time consuming and expensive, is not required for these purposes. However, TLS and UAV-LS fusion opens up new avenues to improve stand-alone UAV-LS structural measurements at the landscape-scale by applying TLS as a local calibration tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanrubbish发布了新的文献求助10
1秒前
jingjing发布了新的文献求助10
1秒前
Sunbrust发布了新的文献求助10
2秒前
七页禾完成签到,获得积分10
3秒前
hyd1640完成签到,获得积分10
7秒前
8秒前
若水完成签到,获得积分10
8秒前
郭郭完成签到 ,获得积分10
8秒前
单纯沛凝完成签到,获得积分10
9秒前
9秒前
9秒前
jingjing完成签到,获得积分10
10秒前
大真人发布了新的文献求助10
13秒前
曾泓跃发布了新的文献求助30
15秒前
灵巧的成风完成签到,获得积分20
16秒前
小邹完成签到,获得积分10
18秒前
迷路的含桃完成签到 ,获得积分10
19秒前
大真人完成签到,获得积分10
19秒前
Billy应助Wangyingjie5采纳,获得30
19秒前
CodeCraft应助Sunbrust采纳,获得10
20秒前
21秒前
WYX完成签到 ,获得积分10
21秒前
星辰大海应助Rr采纳,获得10
22秒前
完美世界应助accept白采纳,获得10
24秒前
24秒前
小马甲应助12345采纳,获得10
25秒前
神秘玩家完成签到 ,获得积分10
25秒前
生动凝旋发布了新的文献求助10
26秒前
王利宾完成签到,获得积分10
26秒前
27秒前
cathylll发布了新的文献求助30
27秒前
27秒前
27秒前
ll完成签到,获得积分10
28秒前
朴素书雁完成签到,获得积分10
28秒前
Bordyfan完成签到,获得积分10
29秒前
广东小豆芽菜完成签到,获得积分10
29秒前
SinceWang发布了新的文献求助10
29秒前
Orange应助灵巧的成风采纳,获得10
30秒前
小柒发布了新的文献求助10
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828224
求助须知:如何正确求助?哪些是违规求助? 3370531
关于积分的说明 10463777
捐赠科研通 3090448
什么是DOI,文献DOI怎么找? 1700414
邀请新用户注册赠送积分活动 817833
科研通“疑难数据库(出版商)”最低求助积分说明 770486