Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network

人造甜味剂 人工智能 人工神经网络 品味 卷积神经网络 三氯蔗糖 多层感知器 模式识别(心理学) 计算机科学 机器学习 化学 食品科学
作者
Weichen Bo,Dongya Qin,Xin Zheng,Yue Wang,Botian Ding,Yinghong Li,Guizhao Liang
出处
期刊:Food Research International [Elsevier BV]
卷期号:153: 110974-110974 被引量:40
标识
DOI:10.1016/j.foodres.2022.110974
摘要

Identifying the taste characteristics of molecules is essential for the expansion of their application in health foods and drugs. It is time-consuming and consumable to identify the taste characteristics of a large number of compounds through experiments. To date, computational methods have become an important technique for identifying molecular taste. In this work, bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener are predicted using three structure-taste relationship models based on the convolutional neural networks (CNN), multi-layer perceptron (MLP)-Descriptor, and MLP-Fingerprint. The results showed that all three models have unique characteristics in the prediction of bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener. For the prediction of bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener, the MLP-Fingerprint model exhibited a higher predictive AUC value (0.94, 0.94 and 0.95) than the MLP-Descriptor model (0.94, 0.84 and 0.87) and the CNN model (0.88, 0.90 and 0.91) by external validation, respectively. The MLP-Descriptor model showed a distinct structure-taste relationship of the studied molecules, which helps to understand the key properties associated with bitterants and sweeteners. The CNN model requires only a simple 2D chemical map as input to automate feature extraction for favorable prediction. The obtained models achieved accurate predictions of bitterant/non-bitterant, sweetener/non-sweetener and bitterant and sweetener, providing vital references for the identification of bioactive molecules and toxic substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助钟为海采纳,获得10
2秒前
2秒前
3秒前
顾矜应助油柑美式采纳,获得10
5秒前
lll完成签到,获得积分10
5秒前
satchzhao发布了新的文献求助10
6秒前
王春丽发布了新的文献求助10
6秒前
宋心茹发布了新的文献求助10
6秒前
英俊的铭应助王学生采纳,获得10
6秒前
7秒前
SciGPT应助Haki采纳,获得10
7秒前
8秒前
9秒前
君君发布了新的文献求助10
10秒前
10秒前
11秒前
李健应助zhao采纳,获得10
12秒前
吴刀仔发布了新的文献求助10
12秒前
13秒前
weiboo发布了新的文献求助10
14秒前
油柑美式发布了新的文献求助10
15秒前
15秒前
脑洞疼应助仲颖采纳,获得10
15秒前
windyhill完成签到,获得积分10
15秒前
善学以致用应助叶子采纳,获得10
16秒前
Owen应助飞飞采纳,获得10
17秒前
17秒前
春风沂水完成签到,获得积分10
17秒前
情怀应助王春丽采纳,获得10
17秒前
油柑美式完成签到,获得积分10
19秒前
20秒前
21秒前
KK完成签到 ,获得积分10
22秒前
深情梦蕊发布了新的文献求助10
23秒前
周Z完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4116668
求助须知:如何正确求助?哪些是违规求助? 3655161
关于积分的说明 11573999
捐赠科研通 3358411
什么是DOI,文献DOI怎么找? 1844847
邀请新用户注册赠送积分活动 910438
科研通“疑难数据库(出版商)”最低求助积分说明 826945